A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Throughfall under a teak plantation in Thailand: a multifactorial analysis on the effects of canopy phenology and meteorological conditions. | LitMetric

Valuable teak (Tectona grandis Linn. f.) plantations cover vast areas throughout Southeast Asia. This study sought to increase our understanding of throughfall inputs under teak by analyzing the abiotic and biotic factors governing throughfall amounts and ratios in relation to three canopy phenophases (leafless, leafing, and leafed). There was no rain during the brief leaf senescence phenophase in our study. Leveraging detailed field observations, we employed boosted regression tree (BRT) analysis to identify the primary controls on throughfall amount and ratio during each canopy phenophase. Whereas throughfall amounts were always dominated by rainfall magnitude (as expected), throughfall ratios were governed by a suite of predictor variables during each phenophase. The BRT analysis demonstrated that throughfall ratio in the leafless phase was most influenced (in descending order of importance) by air temperature, rainfall amount, maximum wind speed, and rainfall intensity. Throughfall ratio in the leafed phenophase was dominated by rainfall amount. The leafing phenophase was an intermediate case where rainfall amount, air temperature, and vapor pressure deficit were most important. Our results highlight the fact that throughfall ratios are differentially influenced by a suite of meteorological variables during each canopy phenophase. Abiotic variables, such as rainfall amount and air temperature, trumped leaf area index and stand density in their effect on throughfall ratio. The leafing phenophase, while transitional in nature and short in duration, has a detectable and unique impact on water inputs to teak plantations. Further work is needed to better understand the biogeochemistry of leaf emergence in teak plantations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00484-014-0926-1DOI Listing

Publication Analysis

Top Keywords

rainfall amount
16
throughfall ratio
12
air temperature
12
throughfall
10
inputs teak
8
throughfall amounts
8
brt analysis
8
canopy phenophase
8
dominated rainfall
8
throughfall ratios
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!