The influences of hydroxyl functional group (-OH) on the thermodynamic and structural properties of ionic liquids (ILs) composed of 1-(2-Hydroxyethyl)-3-methyl imidazolium ([C2OHmim](+)) cation and the six different conventional anions, including [Cl](-), [NO3](-), [BF4](-), [PF6](-), [TfO](-), and [Tf2N](-) have been extensively investigated using classical molecular dynamics (MD) simulations combined with ab initio calculations over a wide range of temperature (298-550 K). The volumetric thermodynamic properties, enthalpy of vaporization, cohesive energy density, Hildebrand solubility parameter, and heat capacity at constant pressure were estimated at desired temperature. The simulated densities were in good agreement with the experimental data with a slight overestimation. The interionic interaction of selected ILs was also computed using both the MD simulations and ab initio calculations. It was found that the highest association of cation and anion is attributed to [C2OHmim][Cl] followed by [C2OHmim][NO3], and [C2OHmim][Tf2N] with the bulkiest anion has the weakest interionic interaction among chosen ILs. The similar trend of interactions energies was nearly observed from cohesive energy density results. Additional structural details were comprehensively yielded by calculating radial distribution functions (RDFs) and spatial distribution function (SDFs) at 358 K. The most stable configurations of isolated and dimer ion pairs of these ILs were in excellent consistency with RDFs and SDFs results. Significant changes in arrangement of anions around the [C2OHmim](+) cation in comparison with conventional imidazolium-based ILs can be inferred from the MD simulations and ab initio results. Also, microscopic structural properties disclosed that the most strong cation-cation interaction is ascribed to the hydroxyl-functionalized ILs composed of bulkier anions, whereas ILs incorporating [Cl](-) and [NO3](-) anions are mainly involved in cation-anion interactions. The formation of the intramolecular hydrogen bonding in the [C2OHmim](+) cation is another interesting result of the present study.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp5083714DOI Listing

Publication Analysis

Top Keywords

structural properties
12
simulations initio
12
initio calculations
12
[c2ohmim]+ cation
12
1-2-hydroxyethyl-3-methyl imidazolium
8
ionic liquids
8
thermodynamic structural
8
molecular dynamics
8
dynamics simulations
8
ils composed
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Sage Bionetworks, Seattle, WA, USA.

Background: There is an urgent need for new therapeutic and diagnostic targets for Alzheimer's disease (AD). Dementia afflicts roughly 55 million individuals worldwide, and the prevalence is increasing with longer lifespans and the absence of preventive therapies. Given the demonstrated heterogeneity of Alzheimer's disease in biological and genetic components, it is critical to identify new therapeutic approaches.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Sharp Therapeutics, Pittsburgh, PA, USA.

Background: Progranulin (GRN) plays a critical role in familial frontotemporal dementia (fFTD), where GRN haploinsufficiency leads to reduction in PGRN levels in the brain, resulting in degeneration of neurons in the frontal lobe of brain responsible for personality, language, and behavior. FTD is the most common dementia in people under 60. Sortilin (Sort1), expressed by neurons, endocytoses, and delivers PGRN rapidly to lysosomes for degradation.

View Article and Find Full Text PDF

Background: The TREAT-AD centers aim to improve Alzheimer's Disease (AD) research by offering free, high-quality tools and technologies. Lyn is a tyrosine kinase that belongs to the Src family kinases. The expression of Lyn and its activity have been implicated in AD.

View Article and Find Full Text PDF

Background: The TaRget Enablement to Accelerate Therapy Development of Alzheimer's Disease (TREAT-AD) Centers are dedicated to identifying and validating targets from the NIH Accelerating Medicines Partnership for Alzheimer's Disease (AMP-AD). The centers develop Target Enabling Packages (TEPs) to explore new therapeutic target hypotheses, moving beyond the traditional focus on amyloid or tau pathologies. In accordance with open science principles, data, methods, and tools are freely shared with the research community via an open-access platform, the AD Knowledge Portal.

View Article and Find Full Text PDF

Background: The goal of the TREAT-AD Center is to enable drug discovery by developing assays and providing tool compounds for novel and emerging targets. The role of microglia in neuroinflammation has been implicated in the pathogenesis of Alzheimer's disease (AD). Genome-wide association studies, whole genome sequencing, and gene-expression network analyses comparing normal to AD brain have identified risk and protective variants in genes essential to microglial function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!