Introduction: Penetration of protease inhibitors (PI) in the central nervous system (CNS) is limited. Therefore, there are concerns about the capacity of PI monotherapy (MT) to control HIV in CNS and preserve brain integrity.

Methods: Exploratory case-control study designed to compare neuronal integrity and brain inflammation in HIV-suppressed patients (>2 years) with and without neurocognitive impairment (NI), treated with MT or triple therapy (TT), 3-Tesla cerebral magnetic resonance image (MRI) and spectroscopy (MRS) were used to evaluate neuronal integrity (volume of cerebral structures and MRS levels of N-acetyl-aspartate (NAA)) and brain inflammation (MRS levels of myo-inositol (MI) and choline (CHO)). MRS biomarkers were measured in 4 voxels located in basal ganglia, frontal (2) and parietal lobes. A comprehensive battery of tests (14 tests - 7 domains) was used to diagnose neurocognitive impairment (1).

Results: We included 18 neurocognitively impaired patients (MT: 10, TT: 8) and 21 without NI (MT: 9; TT: 12, Table 1). Subset of patients with NI: cerebral volumes and MRS biomarkers were mostly similar between MT and TT with exception of the right cingulate nucleolus volume (MT: 8854±1851 vs TT: 10482±1107 mm(3); p<0.04), CHO levels in basal ganglia (MT: 0.44±0.05 vs TT: 0.37±0.03 MMOL/L; p<0.01) and the NAA levels in parietal lobe (MT: 1.49±0.12 vs 1.70±0.13 MMOL/L; p<0.01). Subset of patients without NI: cerebral volumes and MRS biomarkers were mostly similar between MT and TT with exception of MI levels in frontal lobe (MT: 1.20±0.36 vs 0.81±0.25 MMOL/L; p=0.01).

Conclusions: We did not find significant differences in cerebral volumes or MRS biomarkers in most areas of the brain. However, we found higher levels of inflammation and neuronal damage in some brain areas of patients who received MT. This observation has to be taken into caution while we could not adjust our results by potential confounders. Further investigation is needed to confirm these preliminary results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224931PMC
http://dx.doi.org/10.7448/IAS.17.4.19578DOI Listing

Publication Analysis

Top Keywords

neuronal integrity
12
brain inflammation
12
cerebral volumes
8
integrity brain
8
triple therapy
8
neurocognitive impairment
8
cerebral
4
volumes neuronal
4
brain
4
inflammation measured
4

Similar Publications

Background: Traumatic brain injury (TBI) is a leading cause of mortality worldwide and often results in substantial cognitive, motor, and psychological impairments, triggering oxidative stress, neuroinflammation, and neurodegeneration. This study examined the neuroprotective effects of azithromycin (AZI) in TBI.

Methods: TBI was induced in rats using the weight-drop method.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is a crucial structure that maintains brain homeostasis by regulating the entry of molecules and cells from the bloodstream into the central nervous system (CNS). Neurodegenerative diseases such as Alzheimer's and Parkinson's disease, as well as ischemic stroke, compromise the integrity of the BBB. This leads to increased permeability and the infiltration of harmful substances, thereby accelerating neurodegeneration.

View Article and Find Full Text PDF

Cicadae Periostracum (CP) is a traditional Chinese animal-derived medicine with the potential to treat Parkinson's disease (PD). This study aims to explore the pharmacodynamic mechanisms of CP against PD-based on metabolomics technology and provide a theoretical basis for developing new anti-PD medicine. First, MPP-induced SH-SY5Y cells were used to evaluate the anti-PD activity of CP.

View Article and Find Full Text PDF

Lipid Oxidation at the Crossroads: Oxidative Stress and Neurodegeneration Explored in .

Antioxidants (Basel)

January 2025

Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain.

Lipid metabolism plays a critical role in maintaining cellular integrity, especially within the nervous system, where lipids support neuronal structure, function, and synaptic plasticity. However, this essential metabolic pathway is highly susceptible to oxidative stress, which can lead to lipid peroxidation, a damaging process induced by reactive oxygen species. Lipid peroxidation generates by-products that disrupt many cellular functions, with a strong impact on proteostasis.

View Article and Find Full Text PDF

Although commonly appreciated for their anti-oxidative and neuroprotective properties, flavonoids can also exhibit pro-oxidative activity, potentially reducing cell survival, particularly in the presence of metal ions. Disrupted copper homeostasis is a known contributor to neuronal dysfunction through oxidative stress induction. This study investigated the effects of myricitrin (1-20 μg/mL) on copper-induced toxicity (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!