Pre-synaptic C-terminal truncated tau is released from cortical synapses in Alzheimer's disease.

J Neurochem

UCLA School of Nursing, Los Angeles, California, USA; UCLA Brain Research Institute, Los Angeles, California, USA; UCLA Center for the Advancement of Gerontological Nursing Sciences, Los Angeles, California, USA; UCLA Clinical and Translational Science Institute, Los Angeles, California, USA.

Published: May 2015

The microtubule-associated protein tau has primarily been associated with axonal location and function; however, recent work shows tau release from neurons and suggests an important role for tau in synaptic plasticity. In our study, we measured synaptic levels of total tau using synaptosomes prepared from cryopreserved human postmortem Alzheimer's disease (AD) and control samples. Flow cytometry data show that a majority of synaptic terminals are highly immunolabeled with the total tau antibody (HT7) in both AD and control samples. Immunoblots of synaptosomal fractions reveal increases in a 20 kDa tau fragment and in tau dimers in AD synapses, and terminal-specific antibodies show that in many synaptosome samples tau lacks a C-terminus. Flow cytometry experiments to quantify the extent of C-terminal truncation reveal that only 15-25% of synaptosomes are positive for intact C-terminal tau. Potassium-induced depolarization demonstrates release of tau and tau fragments from pre-synaptic terminals, with increased release from AD compared to control samples. This study indicates that tau is normally highly localized to synaptic terminals in cortex where it is well-positioned to affect synaptic plasticity. Tau cleavage may facilitate tau aggregation as well as tau secretion and propagation of tau pathology from the pre-synaptic compartment in AD. Results demonstrate the abundance of tau, mainly C-terminal truncated tau, in synaptic terminals in aged control and in Alzheimer's disease (AD) samples. Tau fragments and dimers/oligomers are prominent in AD synapses. Following depolarization, tau release is potentiated in AD nerve terminals compared to aged controls. We hypothesize (i) endosomal release of the different tau peptides from AD synapses, and (ii) together with phosphorylation, fragmentation of synaptic tau exacerbates tau aggregation, synaptic dysfunction, and the spread of tau pathology in AD. Aβ = amyloid-beta.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397171PMC
http://dx.doi.org/10.1111/jnc.12991DOI Listing

Publication Analysis

Top Keywords

tau
25
alzheimer's disease
12
control samples
12
synaptic terminals
12
c-terminal truncated
8
truncated tau
8
tau release
8
synaptic
8
tau synaptic
8
synaptic plasticity
8

Similar Publications

Alzheimer's Disease (AD), a progressive neurodegenerative disorder, is characterized by the accumulation of neurofibrillary tangles and β-amyloid plaques, leading to a decline in cognitive function. AD is characterized by tau protein hyperphosphorylation and extracellular β-amyloid accumulation. Even after much research, there are still no proven cures for AD.

View Article and Find Full Text PDF

Diagnosis and Management of Progressive Corticobasal Syndrome.

Curr Treat Options Neurol

July 2024

Department of Neurology, Division of Behavioral Neurology, Stanford Neuroscience Health Center, 453 Quarry Road, Palo Alto, CA 94304, USA.

Purpose Of Review: The purpose of this review is to discuss the clinical, radiological, and neuropathological heterogeneity of corticobasal syndrome (CBS), which can complicate the determination of underlying etiology and lead to inaccurate treatment decisions. Though the most common diagnosis is corticobasal degeneration (CBD), the spectrum of underlying pathologies expands beyond CBD and can overlap with other neurodegenerative diseases and even the neuroimmunology field. We will review possible clinical presentations and cues that can point towards the etiology.

View Article and Find Full Text PDF

Introduction: Plasma amyloid beta/amyloid beta (Aβ/Aβ) and phosphorylated tau217 (p-tau217) identify individuals with primary Alzheimer's disease (AD). They may detect AD co-pathology in the setting of other primary neurodegenerative diseases, but this has not been systematically studied.

Methods: We compared the clinical, neuroimaging, and neuropathological associations of plasma Aβ/Aβ (mass spectrometry), p-tau217 (electrochemiluminescence), and neurofilament light ([NfL], single molecule array [Simoa]), as markers of AD co-pathology, in a sporadic frontotemporal dementia (FTD) cohort ( = 620).

View Article and Find Full Text PDF

Serum biomarkers as prognostic markers for Alzheimer's disease in a clinical setting.

Alzheimers Dement (Amst)

January 2025

Neurochemistry Laboratory Department of Laboratory Medicine Amsterdam UMC Amsterdam The Netherlands.

Introduction: Blood-based glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), and phosphorylated tau (pTau) have shown promising prognostic potential in Alzheimer's disease (AD), but their applicability in clinical settings where comorbidities are prevalent remains uncertain.

Methods: Simoa assays quantified GFAP, NfL, and pTau181 in retrospectively retrieved prediagnostic serum samples from 102 AD patients and 21 non-AD controls.

Results: Higher serum GFAP levels predicted earlier clinical presentation and faster subsequent Mini-Mental State Examination decline in AD patients.

View Article and Find Full Text PDF

Introduction: Increasing evidence links amyloid beta (Aβ) aggregation with inflammation. This pilot study investigated the use of an immunoassay panel to map biomarker changes in patients with Alzheimer's disease (AD). Furthermore, we evaluated the stability of protein quantification after multiple freeze-thaw cycles (FTCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!