A series of selenophenes with redox-active amine end-capping groups was synthesized and investigated. A combination of cyclic voltammetry, optical absorption, EPR spectroscopy, and quantum-chemical calculations based on Kohn-Sham density functional theory was used to explore charge delocalization in the monocationic mixed-valence forms of these selenophenes, and the results were compared to those obtained from analogous studies of structurally identical thiophenes. The striking finding is that the comproportionation constant (Kc) for the experimentally investigated biselenophene is more than 2 orders of magnitude lower than for its bithiophene counterpart (in CH3CN with 0.1 M TBAPF6), and the electronic coupling between the two amine end-capping groups in the mixed-valent biselenophene monocation is only roughly half as strong as in the corresponding bithiophene monocation. These are surprisingly large differences given the structural similarity between the respective biselenophene and bithiophene molecules. However, the computationally determined comproportionation constants for biselenophene and bithiophene are almost identical, and the electronic coupling in the monocationic biselenophene is only slightly smaller than that in the monocationic bithiophene. We assume that the external electric field may be responsible for the differences in monocation stabilities between experiment and computation. Our findings indicate that charge delocalization across individual selenophenes tends to be less pronounced than across individual thiophenes, and this may have important implications for long-range charge transfer across selenophene oligomers or polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp5082164DOI Listing

Publication Analysis

Top Keywords

charge delocalization
12
amine end-capping
8
end-capping groups
8
electronic coupling
8
biselenophene bithiophene
8
bithiophene
6
biselenophene
6
charge
4
delocalization organic
4
organic mixed
4

Similar Publications

Impact of Subsurface Oxygen on CO Charging Energy Changes in Cu Surfaces.

J Phys Chem Lett

January 2025

Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States.

Subsurface oxygen in oxide-derived copper catalysts significantly influences CO activation. However, its effect on the molecular charging process, the key to forming the CO intermediate, remains poorly understood. We employ many-body perturbation theory to investigate the impact of the structural factors induced by the subsurface oxygen on the charged activation of CO.

View Article and Find Full Text PDF

Electrostatic and Electronic Effects on Doped Nickel Oxide Nanofilms for Water Oxidation.

J Am Chem Soc

January 2025

School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Tyree Energy Technologies Building, 229 Anzac Parade, Kensington, NSW 2052, Australia.

An ideal water-splitting electrocatalyst is inexpensive, abundant, highly active, stable, selective, and durable. The anodic oxygen evolution reaction (OER) is the main bottleneck for H production with a complex and not fully resolved mechanism, slow kinetics, and high overpotential. Nickel oxide-based catalysts (NiO) are highly active and cheaper than precious metal catalysts.

View Article and Find Full Text PDF

Electron delocalization is studied in the ground singlet and first excited triplet states of azulene-containing helicenes. After showing that the compounds we study can be synthesized, we show that they exhibit a charge separation in the ground state, which does not appear in their triplet excited state. Then, magnetically induced properties (IMS3D and ACID) and electron density decomposition methods (EDDB) are used to rationalize aromaticity in these systems.

View Article and Find Full Text PDF

Open-shell radical materials, which are characterized by unpaired electrons, have led to revolutionary breakthroughs in material science due to their unique optoelectronic properties. However, the involvement of organic radicals in photodynamic therapy (PDT) has rarely been reported or discussed. This work studies two photosensitizer analogs.

View Article and Find Full Text PDF

Self-Powered Filterless Narrowband UV Photodetection Triggered by Asymmetric Charge Carrier Generation in a Wide-Bandgap Halide Perovskite Ferroelectric.

Small

January 2025

Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China.

Narrowband photodetection with selective light detection in ultraviolet (UV) range is particularly pronounced in specialized such as targeted wavelength imaging and UV-phototherapy. In contrast to conventional strategies, ferroelectric materials with pronounced bulk photovoltaic effect (BPVE) provide a novel asymmetric carrier generation concept for achieving filterless spectrally selective photodetection. Herein, for the first time, the realization of self-powered filterless narrowband UV photodetection is demonstrated in bulk single crystals of a newly developed halide perovskite ferroelectric, 2FEAEAPbCl (2FEEPC), which exhibits a wide bandgap of 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!