Strong emissive nanofibers of organogels for the detection of volatile acid vapors.

Chemistry

State Key Laboratory of Supramolecular, Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun (China).

Published: March 2015

Two L-phenylalanine derivatives with 5,8-bis(2-(carbazol-3-yl)vinyl)quinoxaline (PCQ) and 5,8-bis[2-(carbazol-3-yl)]-2,3-dimethylquinoxaline (DCQ) as fluorophores were synthesized, and their photophysical properties were measured and compared. The two compounds were found to gelate some organic solvents and self-assemble into 1D nanofibers in gels. The wet gel of PCQ emitted a weak orange fluorescence, but the DCQ gel had a strong green one. This result can be due to the presence of two methyl groups and the nonplanar conformation of fluorophore in DCQ. The gel film of DCQ also showed significantly stronger fluorescence than that of PCQ. Thus, the wet gel and xerogel film of DCQ were selected to study their sensing properties to acids. The yellow wet gel of DCQ transformed into a brown sol upon the addition of 0.2 equiv trifluoroacetic acid (TFA), accompanied by emission quenching. The xerogel film of DCQ rapidly responded to volatile acids, such as TFA, HCl, and HOAc. The fluorescence of the xerogel film was gradually quenched with increased concentration of volatile acid vapors. The fibrous film exhibited low detection limits for volatile acid. The detection limits of the thin films for TFA, HCl, and HOAc reached 43, 122, and 950 ppb, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201405074DOI Listing

Publication Analysis

Top Keywords

volatile acid
12
wet gel
12
film dcq
12
xerogel film
12
acid vapors
8
dcq gel
8
tfa hcl
8
hcl hoac
8
detection limits
8
dcq
7

Similar Publications

A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.

View Article and Find Full Text PDF

Background & objectives The choice of anesthetic for better perioperative conservation of immune responses has always been contentious. This study investigated the differential impact of the intravenous anesthetic, propofol, and the volatile anesthetic, isoflurane on the T cell immune responses, if any, among individuals going through perioperative breast cancer. Methods Perioperative blood samples (preoperative, intraoperative and postoperative) collected from participants with breast cancer in two arms namely isoflurane arm (n=50) and the propofol arm (n=50) were analyzed for T cell immune response using flow cytometry and ELISA.

View Article and Find Full Text PDF

In this study, the nano chitosan particles were produced by ionotropic gelation between sodium tripolyphosphate and chitosan. The effect of nano chitosan with or without sodium lactate coating was evaluated on physicochemical (pH, thiobarbituric acid, total volatile basic nitrogen, and peroxide), microbial (total mesophilic and psychrotrophic viable counts, lactic acid bacteria, yeasts, and molds), and sensorial properties of beef burgers within 24 days of storage at 4°C. The solutions of 1% nano chitosan (T), 2% nano chitosan (T), 2.

View Article and Find Full Text PDF

This study presents a targeted dual-acid preservation strategy for ready-to-eat crayfish (Procambarus clarkii), integrating a blend of phytic and lactic acids to fortify key sensory attributes throughout the storage phase. The primary objective was to maintain the sensory attributes of the crayfish during a 30-day storage period under 40 °C. Our approach significantly bolstered color retention by suppressing Maillard reactions and lipid oxidation, thereby maintaining the product's visual allure.

View Article and Find Full Text PDF

Primary sludge can serve as an internal carbon source for denitrification in wastewater treatment plants (WWTPs). This study explores the use of alkaline treatment to produce a fermentation broth from primary sludge, which predominantly contains short-chain volatile fatty acids (VFAs), with acetic acid and propionic acid making up over 65% of the total VFAs. The performance of this fermentation broth as a sole carbon source for denitrification was compared with that of sodium acetate, acetic acid, methanol, and ethanol in both biofilm and activated sludge systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!