Pattern of tick aggregation on mice: larger than expected distribution tail enhances the spread of tick-borne pathogens.

PLoS Comput Biol

Dipartimento Biodiversità ed Ecologia Molecolare, Centro Ricerca e Innovazione, Fondazione Edmund Mach, San Michele all'Adige, Italy.

Published: November 2014

The spread of tick-borne pathogens represents an important threat to human and animal health in many parts of Eurasia. Here, we analysed a 9-year time series of Ixodes ricinus ticks feeding on Apodemus flavicollis mice (main reservoir-competent host for tick-borne encephalitis, TBE) sampled in Trentino (Northern Italy). The tail of the distribution of the number of ticks per host was fitted by three theoretical distributions: Negative Binomial (NB), Poisson-LogNormal (PoiLN), and Power-Law (PL). The fit with theoretical distributions indicated that the tail of the tick infestation pattern on mice is better described by the PL distribution. Moreover, we found that the tail of the distribution significantly changes with seasonal variations in host abundance. In order to investigate the effect of different tails of tick distribution on the invasion of a non-systemically transmitted pathogen, we simulated the transmission of a TBE-like virus between susceptible and infective ticks using a stochastic model. Model simulations indicated different outcomes of disease spreading when considering different distribution laws of ticks among hosts. Specifically, we found that the epidemic threshold and the prevalence equilibria obtained in epidemiological simulations with PL distribution are a good approximation of those observed in simulations feed by the empirical distribution. Moreover, we also found that the epidemic threshold for disease invasion was lower when considering the seasonal variation of tick aggregation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230730PMC
http://dx.doi.org/10.1371/journal.pcbi.1003931DOI Listing

Publication Analysis

Top Keywords

tick aggregation
8
distribution
8
distribution tail
8
spread tick-borne
8
tick-borne pathogens
8
tail distribution
8
theoretical distributions
8
epidemic threshold
8
pattern tick
4
aggregation mice
4

Similar Publications

Ixodid ticks are important disease vectors that significantly impact animal health and cause considerable economic losses, particularly in tropical and subtropical countries. The aim of the present study was to determine the identity, seasonal distribution, and preferred attachment sites of adult ixodid tick species of cattle in four municipalities (Aïn El Hadid, Sidi Bakhti, Mechraa Safa, and Sidi Hosni) of the Province of Tiaret (north-west Algeria) between May 2022 and May 2023. A total of 317 cattle were randomly selected and examined for tick infestation; 108 (34.

View Article and Find Full Text PDF

Ticks have coevolved with their hosts over millions of years, developing the ability to evade hemostatic, inflammatory, and immunological responses. Salivary molecules from these vectors bind to cytokines, chemokines, antibodies, complement system proteins, vasodilators, and molecules involved in coagulation and platelet aggregation, among others, inhibiting or blocking their activities. Initially studied to understand the complexities of tick-host interactions, these molecules have been more recently recognized for their potential clinical applications.

View Article and Find Full Text PDF

Background: Ehrlichia canis, a rickettsial organism, is responsible for causing ehrlichiosis, a tick-borne disease affecting dogs.

Objectives: This study aimed to estimate ehrlichiosis prevalence and identify associated risk factors in pet dogs.

Methods: A total of 246 peripheral blood samples were purposively collected from pet dogs in Dhaka, Mymensingh, and Rajshahi districts between December 2018 and December 2020.

View Article and Find Full Text PDF

Background: The incidence of tick-borne diseases is increasing across the USA, with cases concentrated in the northeastern and midwestern regions of the country. Ixodes scapularis is one of the most important tick-borne disease vectors and has spread throughout the northeastern USA over the past four decades, with established populations in all states of the region.

Methods: To better understand the rapid expansion of I.

View Article and Find Full Text PDF
Article Synopsis
  • Neonicotinoid pesticides, widely used around the world, are neurotoxic and are found in various environments, including food and water sources.
  • An analysis of U.S. EPA data reported 842 non-occupational poisoning incidents linked to these pesticides from 2018 to 2022, with significant cases resulting in major illnesses and fatalities primarily associated with specific products.
  • The study calls for the EPA to utilize its authority to revoke unsafe pesticide uses, emphasizing the importance of preventing neurotoxicity linked to these substances.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!