Direct cytosolic delivery of siRNA using nanoparticle-stabilized nanocapsules.

Angew Chem Int Ed Engl

Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003 (USA).

Published: January 2015

The use of nanoparticle-stabilized nanocapsules (NPSCs) for the direct cytosolic delivery of siRNA is reported. In this approach, siRNA is complexed with cationic arginine-functionalized gold nanoparticles by electrostatic interactions, with the resulting ensemble self-assembled onto the surface of fatty acid nanodroplets to form a NPSC/siRNA nanocomplex. The complex rapidly delivers siRNA into the cytosol through membrane fusion, a mechanism supported by cellular uptake studies. Using destabilized green fluorescent protein (deGFP) as a target, 90% knockdown was observed in HEK293 cells. Moreover, the delivery of siRNA targeting polo-like kinase 1 (siPLK1) efficiently silenced PLK1 expression in cancer cells with concomitant cytotoxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314441PMC
http://dx.doi.org/10.1002/anie.201409161DOI Listing

Publication Analysis

Top Keywords

delivery sirna
12
direct cytosolic
8
cytosolic delivery
8
nanoparticle-stabilized nanocapsules
8
sirna
5
sirna nanoparticle-stabilized
4
nanocapsules nanoparticle-stabilized
4
nanocapsules npscs
4
npscs direct
4
sirna reported
4

Similar Publications

The ERBB2 is one of the most studied genes in oncology for its significant role in human malignancies. The metastasis-associated properties that facilitate cancer metastasis can be enhanced by activating the ERBB2 receptor signaling pathways. Additionally, therapeutic resistance is conferred by ERBB2 overexpression via receptor-mediated antiapoptotic signals.

View Article and Find Full Text PDF

Alzheimer's disease (AD) remains a major challenge in developing effective treatments due to its complex pathophysiology, including the accumulation of amyloid-beta plaques and tau tangles. Small interfering RNA (siRNA) technology offers promise for targeted gene silencing, but effective delivery to the central nervous system remains a significant obstacle. Viral vectors have emerged as potent delivery vehicles for transporting siRNA to neural tissues.

View Article and Find Full Text PDF

Nucleus pulposus cell (NPC) senescence contributes to intervertebral disc degeneration (IVDD). However, the underlying molecular mechanisms are not fully understood. In this study, it is demonstrated that angiotensin-converting enzyme 2 (ACE2) counteracted the aging of NPCs and IVDD at the cellular and physiological levels.

View Article and Find Full Text PDF

The field of biomedical science has witnessed another milestone with the advent of RNA-based therapeutics. This review explores three major RNA molecules, namely: messenger RNA (mRNA), RNA interference technology (RNAi), and Antisense Oligonucleotide (ASO), and analyses U.S.

View Article and Find Full Text PDF

The effective clinical translation of messenger RNA (mRNA), small interfering RNA (siRNA), and microRNA (miRNA) for therapeutic purposes hinges on the development of efficient delivery systems. Key challenges include their susceptibility to degradation, limited cellular uptake, and inefficient intracellular release. Polymeric drug conjugates (PDCs) offer a promising solution, combining the benefits of polymeric carriers and therapeutic agents for targeted delivery and treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!