Little is known about the seasonal dynamics of biotic contaminants in swine confinement buildings (SCBs). The biotic contaminants of seven SCBs were monitored during one visit in the winter and one during the summer. Paired-end Illumina sequencing of the 16S rRNA gene, V3 region, was used to examine seasonal shifts in bacterial community composition and diversity. The abundances of 16S rRNA genes and six tetracycline resistance genes (tetB, tetH, tetZ, tetO, tetQ, and tetW) were also quantified using real-time PCR. Bacterial abundances, community composition and diversity all showed strong seasonal patterns defined by winter peaks in abundance and diversity. Microclimatic variables of SCBs, particularly air speed, PM2.5 and total suspended particles (TSP) were found significantly correlated to abundances, community composition, and diversity of bacterial bioaerosols. Seasonal fluctuations were also observed for four tetracycline resistance genes, tetH, tetO, tetQ, and tetW. The frequency of occurrences of these resistance genes were significantly higher in samples collected during winter and was also significantly correlated with air speed, PM2.5 and TSP. Overall, our results indicate that biotic contaminants in SCBs exhibit seasonal trends, and these could be associated with the microclimatic variables of SCBs. The correlations established in the current study could be helpful in establishing better management strategies to minimize the potential health impacts on both livestock and humans working in this environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231085 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112897 | PLOS |
Water Res
December 2024
Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, PR China. Electronic address:
Steep redox gradients and diverse microbial communities in the anaerobic hyporheic zone create complex pathways for the degradation of herbicides, often linked to various terminal electron-accepting processes (TEAPs). Identifying the degradation pathways and their controlling factors under various TEAPs is of great significance for understanding mechanisms of water purification in the hyporheic zone. However, current research on herbicides in this area remains insufficient.
View Article and Find Full Text PDFWater Res
December 2024
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China. Electronic address:
Tris(2-choroethyl) phosphate (TCEP) is commonly utilized as a flame retardant and plasticizer, which inevitably coexists with polystyrene microplastics (PS-MPs) in aquatic environments. In this work, the promoting effect of pristine and aged PS-MPs on the photodegradation of TCEP was observed, and the reaction mechanisms and environmental risks of PS-MPs enhancing TCEP photodegradation were clearly revealed. The aged PS-MPs presenting more significant enhancement was attributed to more generation of reactive oxygen species (ROS).
View Article and Find Full Text PDFChempluschem
December 2024
Nanyang Technological University, School of Chemistry, Chemical Engineering and Biotechnology, SINGAPORE.
In Singapore's hot and humid climate, watercolor papers are particularly prone to a paper oxidation issue known as foxing, which refers to the discoloration forming yellowish-brown stains on paper, changing the visual outcome of the watercolor artworks. This research investigates two most popular types of watercolor paper, made from 100% cotton and cotton-wood-pulp mixture. Foxing was generally categorized into two types: biotic and abiotic foxing caused by fungi activities and the presence of metallic contaminants catalytic fungi growth.
View Article and Find Full Text PDFSci Total Environ
December 2024
School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China. Electronic address:
Environmental heavy metal contamination, combined with inappropriate use of fungicides, has led to the co-existence of lead (Pb) and iprodione (IPR), presenting signification risks to ecosystems and human health. The toxic effects resulting from concurrent exposure to Pb and IPR, however, remain poorly understood. In the study, we conducted a comprehensive 60-day subchronic study to investigate the toxic effects on the liver and gut in parental male zebrafish through employing multi-omics analyses.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Département de sciences biologiques, Université de Montréal (UdeM), Montréal, Québec, Canada, H2V 0B3; Groupe de recherche interuniversitaire en limnologie (GRIL), Montréal, Québec, Canada. Electronic address:
The mobilization of rare earth elements (REEs) in aquatic ecosystems is expected to rise significantly due to intensified exploitation, erosion, and climate change. As a result, more attention has been brought to study their environmental fate. However, our ability to assess contamination risks in freshwater organisms remains limited due to scarce data on the composition and accumulation of REEs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!