Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: The TNF receptor superfamily member Fn14 (TNFRSF12A) is the sole signaling receptor for the proinflammatory cytokine TWEAK (TNFSF12).
Tweak: Fn14 engagement stimulates multiple signal transduction pathways, including the NF-κB pathway, and this triggers important cellular processes (e.g., growth, differentiation, migration, and invasion). The TWEAK-Fn14 axis is thought to be a major physiologic mediator of tissue repair after acute injury. Various studies have revealed that Fn14 is highly expressed in many solid tumor types, and that Fn14 signaling may play a role in tumor growth and metastasis. Previously, it was shown that Fn14 levels are frequently elevated in non-small cell lung cancer (NSCLC) tumors and cell lines that exhibit constitutive EGFR phosphorylation (activation). Furthermore, elevated Fn14 levels increased NSCLC cell invasion in vitro and lung metastatic tumor colonization in vivo. The present study reveals that EGFR-mutant NSCLC cells that express high levels of Fn14 exhibit constitutive activation of the cytoplasmic tyrosine kinase Src, and that treatment with the Src family kinase (SFK) inhibitor dasatinib decreases Fn14 gene expression at both the mRNA and protein levels. Importantly, siRNA-mediated depletion of the SFK member Src in NSCLC cells also decreases Fn14 expression. Finally, expression of the constitutively active v-Src oncoprotein in NIH 3T3 cells induces Fn14 gene expression, and NIH 3T3/v-Src cells require Fn14 expression for full invasive capacity.
Implications: These results indicate that oncogenic Src may contribute to Fn14 overexpression in solid tumors, and that Src-mediated cell invasion could potentially be inhibited with Fn14-targeted therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369191 | PMC |
http://dx.doi.org/10.1158/1541-7786.MCR-14-0411 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!