Purpose: The peptides derived from ideal cancer-testis antigens, including LY6K, CDCA1, and IMP3 (identified using genome-wide cDNA microarray analyses), were used in immunotherapy for head and neck squamous cell cancer (HNSCC). In this trial, we analyzed the immune response to and safety and efficacy of vaccine therapy.

Experimental Design: A total of 37 patients with advanced HNSCC were enrolled in this trial of peptide vaccine therapy, and the OS, PFS, and immunologic response were evaluated using enzyme-linked ImmunoSpot (ELISPOT) and pentamer assays. The peptides were subcutaneously administered weekly with IFA. The primary endpoints were evaluated on the basis of differences between HLA-A*2402-positive [A24(+)] patients treated with peptide vaccine therapy and -negative [A24(-)] patients treated without peptide vaccine therapy among those with advanced HNSCC.

Results: Our cancer vaccine therapy was well tolerated. The OS of the A24(+) vaccinated group (n = 37) was statistically significantly longer than that of the A24(-) group (n = 18) and median survival time (MST) was 4.9 versus 3.5 months, respectively; P < 0.05. One of the patients exhibited a complete response. In the A24(+) vaccinated group, the ELISPOT assay identified LY6K-, CDCA1-, and IMP3-specific CTL responses in 85.7%, 64.3%, and 42.9% of the patients, respectively. The patients showing LY6K- and CDCA1-specific CTL responses demonstrated a longer OS than those without CTL induction. Moreover, the patients exhibiting CTL induction for multiple peptides demonstrated better clinical responses.

Conclusions: The immune response induced by this vaccine may improve the prognosis of patients with advanced HNSCC.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-14-0202DOI Listing

Publication Analysis

Top Keywords

vaccine therapy
16
peptide vaccine
12
patients
9
head neck
8
immune response
8
patients advanced
8
advanced hnscc
8
patients treated
8
treated peptide
8
a24+ vaccinated
8

Similar Publications

Currently, no approved antiviral drugs target dengue virus (DENV) infection, leaving treatment reliant on supportive care. DENV vaccine efficacy varies depending on the vaccine type, the circulating serotype, and vaccine coverage. We investigated defective interfering particles (DIPs) and lipid nanoparticles (LNPs) to deliver DI290, an anti-DENV DI RNA.

View Article and Find Full Text PDF

Optimized circular RNA vaccines for superior cancer immunotherapy.

Theranostics

January 2025

Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.

Circular RNA (circRNA) has gained attention as a promising platform for mRNA vaccines due to its stability, sustained protein expression, and intrinsic immunostimulatory properties. This study aimed to design and optimize a circRNA cancer vaccine platform by screening for efficient internal ribosome entry sites (IRES) and enhancing circRNA translation efficiency for improved cancer immunotherapy. We screened 29 IRES elements to identify the most efficient one for immune cell translation, ultimately discovering the A (EV-A) IRES.

View Article and Find Full Text PDF

Background: Cancer immunotherapy is an advanced therapeutic approach that harnesses the body's immune system to target and eliminate tumor cells. Traditional Chinese medicine (TCM), with a history rooted in centuries of clinical practice, plays a crucial role in enhancing immune responses, alleviating cancer-related symptoms, and reducing the risks of infections and complications in cancer patients.

Methodology: This review systematically examines the current literature on TCM-based formulations in cancer immunotherapy.

View Article and Find Full Text PDF

Dendritic cells are the most potent antigen-presenting cells in immune therapeutic approaches for chronic hepatitis B (CHB) infection. Here, we developed a clinical trial to evaluate the efficacy and safety of autologous HBV vaccine-pulsed DCs and their induced T cells (HPDCT) in CHB patients. This was a randomised, prospective, open-label, multicentre, superiority study and 309 treatment-naive CHB patients were divided into HPDCT plus nucleos(t)ide analogues (NAs) group (n = 84), NAs mono-therapy group (n = 82), HPDCT plus Peg-interferon (Peg-IFN) group (n = 69), Peg-IFN mono-therapy group (n = 74).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!