Ginsenoside Rg5 is a compound newly synthesized during the steaming process of ginseng; however, its biological activity has not been elucidated with regard to endothelial function. We found that Rg5 stimulated in vitro angiogenesis of human endothelial cells, consistent with increased neovascularization and blood perfusion in a mouse hind limb ischemia model. Rg5 also evoked vasorelaxation in aortic rings isolated from wild type and high cholesterol-fed ApoE(-/-) mice but not from endothelial nitric-oxide synthase (eNOS) knock-out mice. Angiogenic activity of Rg5 was highly associated with a specific increase in insulin-like growth factor-1 receptor (IGF-1R) phosphorylation and subsequent activation of multiple angiogenic signals, including ERK, FAK, Akt/eNOS/NO, and Gi-mediated phospholipase C/Ca(2+)/eNOS dimerization pathways. The vasodilative activity of Rg5 was mediated by the eNOS/NO/cGMP axis. IGF-1R knockdown suppressed Rg5-induced angiogenesis and vasorelaxation by inhibiting key angiogenic signaling and NO/cGMP pathways. In silico docking analysis showed that Rg5 bound with high affinity to IGF-1R at the same binding site of IGF. Rg5 blocked binding of IGF-1 to its receptor with an IC50 of ∼90 nmol/liter. However, Rg5 did not induce vascular inflammation and permeability. These data suggest that Rg5 plays a novel role as an IGF-1R agonist, promoting therapeutic angiogenesis and improving hypertension without adverse effects in the vasculature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281749PMC
http://dx.doi.org/10.1074/jbc.M114.603142DOI Listing

Publication Analysis

Top Keywords

rg5
10
insulin-like growth
8
growth factor-1
8
factor-1 receptor
8
ginsenoside rg5
8
angiogenesis vasorelaxation
8
activity rg5
8
specific activation
4
activation insulin-like
4
receptor ginsenoside
4

Similar Publications

Background: Ginseng-Schisandra chinensis (GSC) decoction has shown good efficacy in the treatment of asthma, but its t mechanism in the treatment of asthma is still not fully understood.

Purpose: This study aims to elucidate the therapeutic mechanism of GSC for AS by identifying the active components of GSC.

Methods: The chemical composition of GSC was analyzed using UHPLC-MS/MS.

View Article and Find Full Text PDF

Preparation of Rare Dehydrated Protopanaxadiol Ginsenosides from Leaves by Confined Microwave-Driven Transformation.

J Agric Food Chem

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, P.R. China.

Rare dehydrated ginsenosides barely exist in natural ginseng plants. Herein, the confined microwave technique was utilized to transform the main ginsenosides of leaves (PNL) into dehydrated ginsenosides. The main microwave-treated products of dried PNL are dehydrated ginsenoside Rk1, Rg5, notoginsenoside SFt3, and SFt4.

View Article and Find Full Text PDF
Article Synopsis
  • * Ginsenosides like Rb, Rd, Rg, and Rh show anti-inflammatory and anti-tumor effects, and research indicates PDs can inhibit HCC development by targeting multiple signaling pathways.
  • * This review explores the anti-HCC effects of PDs, their mechanisms, and highlights the necessity for further studies to optimize PDs for safe and effective clinical use.
View Article and Find Full Text PDF

Aim Of The Study: To study the changes in the chemical composition and medicinal effects of black ginseng during processing.

Materials And Methods: The contents of ginsenosides Rg1, Re, Rh1, Rb1, 20-(S)-Rg3, 20-(R)-Rg3, and Rg5 were determined using high-performance liquid chromatography (HPLC), and the percentage of rare saponins was calculated. Furthermore, changes in the contents of reducing sugars and amino acids (i.

View Article and Find Full Text PDF

The proliferation of multidrug-resistant and biofilm-forming pathogenic bacteria poses a serious threat to public health. The limited effectiveness of current antibiotics motivates the search for new antibacterial compounds. In this study, a novel strain, RG-5, was isolated from desert soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!