Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays roles in both energy maintenance, and stress signaling by forming a protein complex with seven in absentia homolog 1 (Siah1). Mechanisms to coordinate its glycolytic and stress cascades are likely to be very important for survival and homeostatic control of any living organism. Here we report that apoptosis signal-regulating kinase 1 (ASK1), a representative stress kinase, interacts with both GAPDH and Siah1 and is likely able to phosphorylate Siah1 at specific amino acid residues (Thr-70/Thr-74 and Thr-235/Thr-239). Phosphorylation of Siah1 by ASK1 triggers GAPDH-Siah1 stress signaling and activates a key downstream target, p300 acetyltransferase in the nucleus. This novel mechanism, together with the established S-nitrosylation/oxidation of GAPDH at Cys-150, provides evidence of how the stress signaling involving GAPDH is finely regulated. In addition, the present results imply crosstalk between the ASK1 and GAPDH-Siah1 stress cascades.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281757PMC
http://dx.doi.org/10.1074/jbc.M114.596205DOI Listing

Publication Analysis

Top Keywords

stress signaling
12
apoptosis signal-regulating
8
signal-regulating kinase
8
kinase ask1
8
stress cascades
8
gapdh-siah1 stress
8
stress
6
role apoptosis
4
ask1
4
ask1 activator
4

Similar Publications

PsDMAP1/PsTIP60-regulated H4K16ac is required for ROS-dependent virulence adaptation of on host plants.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.

View Article and Find Full Text PDF

ANAC044 orchestrates mitochondrial stress signaling to trigger iron-induced stem cell death in root meristems.

Proc Natl Acad Sci U S A

January 2025

Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.

View Article and Find Full Text PDF

MicroRNA-204-5p Deficiency within the vmPFC Region Contributes to Neuroinflammation and Behavioral Disorders via the JAK2/STAT3 Signaling Pathway in Rats.

Adv Sci (Weinh)

January 2025

Key Laboratory of Mental Disorders, The Second Hospital of Shandong University, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.

Major depressive disorder (MDD) is usually considered associate with immune inflammation and synaptic injury within specific brain regions. However, the molecular mechanisms underlying the neural deterioration resulting in depression remain unclear. Here, it is found that miR-204-5p is markedly downregulated in the ventromedial prefrontal cortex (vmPFC) in a chronic unpredictable mild stress (CUMS) induce rat model of depression.

View Article and Find Full Text PDF

Background: Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.

Objective: Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).

View Article and Find Full Text PDF

Noncanonical UPR factor CREB3L2 drives immune evasion of triple-negative breast cancer through Hedgehog pathway modulation in T cells.

Sci Adv

January 2025

Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.

The unfolded protein response (UPR) pathway is crucial for tumorigenesis, mainly by regulating cancer cell stress responses and survival. However, whether UPR factors facilitate cell-cell communication between cancer cells and immune cells to drive cancer progression remains unclear. We found that adenosine 3',5'-monophosphate response element-binding protein 3-like protein 2 (CREB3L2), a noncanonical UPR factor, is overexpressed and activated in triple-negative breast cancer, where its cleavage releases a C-terminal fragment that activates the Hedgehog pathway in neighboring CD8+ T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!