Insulin-like growth factor-1 receptor signaling increases the invasive potential of human epidermal growth factor receptor 2-overexpressing breast cancer cells via Src-focal adhesion kinase and forkhead box protein M1.

Mol Pharmacol

Departments of Pharmacology (E.S.-F., S.M.D., R.N.) and Hematology and Medical Oncology (E.P., L.T.-S., R.N.), School of Medicine, and Molecular and Systems Pharmacology Program, Graduate Division of Biological and Biomedical Sciences (E.S.-F., R.N.), and Winship Cancer Institute (R.C.C., E.P., L.T.-S., R.N.), Emory University, Atlanta, Georgia; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia (M.C.B., R.C.C.); and Departments of Obstetrics and Gynecology and Microbiology, James Cancer Hospital, Solove Research Institute and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (K.C.F., P.T.P.K.)

Published: February 2015

Resistance to the human epidermal growth factor receptor (HER2)-targeted antibody trastuzumab is a major clinical concern in the treatment of HER2-positive metastatic breast cancer. Increased expression or signaling from the insulin-like growth factor-1 receptor (IGF-1R) has been reported to be associated with trastuzumab resistance. However, the specific molecular and biologic mechanisms through which IGF-1R promotes resistance or disease progression remain poorly defined. In this study, we found that the major biologic effect promoted by IGF-1R was invasion, which was mediated by both Src-focal adhesion kinase (FAK) signaling and Forkhead box protein M1 (FoxM1). Cotargeting IGF-1R and HER2 using either IGF-1R antibodies or IGF-1R short hairpin RNA in combination with trastuzumab resulted in significant but modest growth inhibition. Reduced invasion was the most significant biologic effect achieved by cotargeting IGF-1R and HER2 in trastuzumab-resistant cells. Constitutively active Src blocked the anti-invasive effect of IGF-1R/HER2 cotargeted therapy. Furthermore, knockdown of FoxM1 blocked IGF-1-mediated invasion, and dual targeting of IGF-1R and HER2 reduced expression of FoxM1. Re-expression of FoxM1 restored the invasive potential of IGF-1R knockdown cells treated with trastuzumab. Overall, our results strongly indicate that therapeutic combinations that cotarget IGF-1R and HER2 may reduce the invasive potential of cancer cells that are resistant to trastuzumab through mechanisms that depend in part on Src and FoxM1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4293451PMC
http://dx.doi.org/10.1124/mol.114.095380DOI Listing

Publication Analysis

Top Keywords

igf-1r her2
16
invasive potential
12
igf-1r
10
insulin-like growth
8
growth factor-1
8
factor-1 receptor
8
human epidermal
8
epidermal growth
8
growth factor
8
factor receptor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!