Single nitrogen (N) dopants in graphene are investigated using atomic-resolution scanning transmission electron microscopy (STEM) combined with electron energy loss spectroscopy (EELS). Using an in situ heating holder at 500 °C provided us with clean graphene surfaces, and we demonstrate that isolated N substitutional atoms remain localized and stable in the graphene lattice even during local sp(2) bond reconstruction. The high stability of isolated N dopants enabled us to acquire 2D EELS maps with simultaneous ADF-STEM images to map out the local bonding variations. We show that a substitutional N dopant causes changes in the EELS of the carbon (C) atoms it is directly bonded to. An upshift in the π* peak of the C K-edge EELS of ∼0.5 eV is resolved and supported by density functional theory simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn5054798DOI Listing

Publication Analysis

Top Keywords

single nitrogen
8
nitrogen dopants
8
dopants graphene
8
stability spectroscopy
4
spectroscopy single
4
graphene
4
graphene elevated
4
elevated temperatures
4
temperatures single
4
graphene investigated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!