Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1117/1.JBO.19.11.111601 | DOI Listing |
Biosens Bioelectron
January 2025
NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614, Poznań, Poland. Electronic address:
Plasmonic surface lattice resonance (SLR) is a phenomenon in which individual localized surface plasmon resonances (LSPRs) excited in periodically-arranged plasmonic nanoparticles couple through the interaction with the propagating diffracted incident light. The SLR optical absorption peak is by at least one order of magnitude more intense than the LSPR one, making SLR superior for applications in which LSPR is commonly used. Recently, we have developed a route for the fabrication of spherical virus-like particles (VLPs) with plasmonic Au cores and protein coronas, where the LSPR in the cores amplifies vibrational Raman signals originating from protein-antibody interactions [ACS Synth.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Physics and Engineering, Albany State University, GA 31707. USA. Electronic address:
This work represents a comprehensive study of the ground vibrational state of C-13 substituted methanol using very high-resolution far-infrared (FIR) and infrared (IR) Synchrotron Radiation spectra recorded with a very high signal-to-noise (S/N) ratio in the entire region from 40to5000cm, at the Canadian Light sources. High resolution combined with a high S/N ratio allowed the recording to be done with an unprecedented resolution of about 0.0017cm.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
Time-resolved spectroscopy is an important tool for probing photochemically induced nonequilibrium dynamics and energy transfer. Herein, a method is developed for the ab initio simulation of vibronic spectra and dynamical processes. This framework utilizes the recently developed nuclear-electronic orbital time-dependent configuration interaction (NEO-TDCI) approach, which treats all electrons and specified nuclei quantum mechanically on the same footing.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748 - Butantã, São Paulo, 05508-900, Brazil.
The conformational isomerization of nitrous acid (HONO) promoted by excitation of the or stretching normal coordinates is the first observed case of an infrared-induced photochemical reaction. The energy captured by the excited normal modes is redistributed into a highly excited vibrational level of the torsion normal coordinate, which is the isomerization reaction coordinate. Herein, we present simple numerical methods to qualitatively investigate the coupling between the normal coordinates and the possible gateways for vibrational energy redistribution leading to the isomerization process.
View Article and Find Full Text PDFSci Rep
January 2025
Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia.
Vanadium dioxide ([Formula: see text]) is a favorable material platform of modern optoelectronics, since it manifests the reversible temperature-induced insulator-metal transition (IMT) with an abrupt and rapid changes in the conductivity and optical properties. It makes possible applications of such a phase-change material in the ultra-fast optoelectronics and terahertz (THz) technology. Despite the considerable interest to this material, data on its broadband electrodynamic response in different states are still missing in the literature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!