Sunlight-induced C to T mutation hotspots in skin cancers occur primarily at methylated CpG sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) formation. The C or 5-methyl-C in CPDs are not stable and deaminate to U and T, respectively, which leads to the insertion of A by DNA polymerase η and defines a probable mechanism for the origin of UV-induced C to T mutations. We have now determined the photoproduct formation and deamination rates for 10 consecutive T=(m)CG CPDs over a full helical turn at the dyad axis of a nucleosome and find that whereas photoproduct formation and deamination is greatly inhibited for the CPDs closest to the histone surface, it is greatly enhanced for the outermost CPDs. Replacing the G in a T=(m)CG CPD with A greatly decreased the deamination rate. These results show that rotational position and flanking sequence in a nucleosome can significantly and synergistically modulate CPD formation and deamination that contribute to C to T mutations associated with skin cancer induction and may have influenced the evolution of the human genome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4245940 | PMC |
http://dx.doi.org/10.1093/nar/gku1049 | DOI Listing |
Recent Pat Anticancer Drug Discov
January 2025
Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, PR China.
Background: Lysyl oxidase-like 2 (LOXL2) is a metalloenzyme that catalyzes oxidative deamination ε-amino group of lysine. It has been found that LOXL2 is a promotor for the metastasis and invasion in kinds of tumors. Previous studies show that disulfide bonds are important components in LOXL2, and their bioactivity can be regulated by those bonds.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
December 2024
Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China. Electronic address:
Gemcitabine (GEM) has been extensively applied in treating various solid tumors. Nonetheless, GEM is easily metabolized in vivo by cytidine deaminase (CDA) to inactive 2', 2'-Difluorodeoxyuridine (dFdU) results in a low oral bioavailability, which limit its clinical application. It was found that Cedazuridine (CDZ) could effectively inhibit the deamination of the drug by CDA, and its combination with GEM might affect the oral bioavailability of GEM.
View Article and Find Full Text PDFBiomed Chromatogr
February 2025
Department of Breast and Thyroid Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui Province, China.
Proteolysis targeting chimera (PROTAC) is emerging as a promising medicinal modality, which has aroused widespread interest among the field of pharmaceutical manufacturing in the recent years. ARV-471 is an orally active PROTAC estrogen receptor degrader against breast cancer, which leads to the ubiquitylation and subsequent degradation of estrogen receptors via the proteasome. In this study, we developed a highly sensitive liquid chromatography tandem mass spectrometry method (LLOQ = 0.
View Article and Find Full Text PDFACS ES T Water
December 2024
Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina 29625, United States.
Proc Natl Acad Sci U S A
December 2024
Changping Laboratory, Beijing 102206, China.
Decades of research have established that mammalian transcription factors (TFs) bind to each gene's regulatory regions and cooperatively control tissue specificity, timing, and intensity of gene transcription. Mapping the combination of TF binding sites genome wide is critically important for understanding functional genomics. Here, we report a technique to measure TFs' binding sites on the human genome with a near single-base resolution by footprinting with deaminase (FOODIE) on a single-molecule and single-cell basis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!