Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634879 | PMC |
http://dx.doi.org/10.2174/156802661418141107120725 | DOI Listing |
Anal Chem
January 2025
State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
The development of intelligent nanotheranostic technology that integrates diagnostic and therapeutic functions holds great promise for personalized nanomedicine. However, most of the nanotheranostic agents exhibit "always-on" properties and do not involve an amplification step, which may largely limit imaging contrast and restrict therapeutic efficacy. Herein, we construct a novel nanotheranostic platform (Hemin/DHPs/PDA@CuS nanocomposite) by assembling DNA hairpin probes (DHPs) and hemin on the surface of PDA@CuS nanosheets that enables amplified fluorescence imaging and activatable chemodynamic therapy (CDT) of tumors.
View Article and Find Full Text PDFAnimal Model Exp Med
January 2025
Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh.
Polyphenols, a diverse group of naturally occurring compounds found in plants, have garnered significant attention for their potential therapeutic properties in treating neurodegenerative diseases (NDs). The Wnt/β-catenin (WβC) signaling pathway, a crucial player in neurogenesis, neuronal survival, and synaptic plasticity, is involved in several cellular mechanisms related to NDs. Dysregulation of this pathway is a hallmark in the development of various NDs.
View Article and Find Full Text PDFACS Infect Dis
January 2025
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States.
Half the world's population is at risk of developing a malaria infection, which is caused by parasites of the genus . Currently, resistance has been identified to all clinically available antimalarials, highlighting an urgent need to develop novel compounds and better understand common mechanisms of resistance. We previously identified a novel tetrahydro-β-carboline compound, PRC1590, which potently kills the malaria parasite.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nankai University, College of Chemistry, 94 Weijin Rd., 300071, Tianjin, CHINA.
Reliable methods for rapidly constructing C(sp3)-rich three-dimensional polycycles are in high demand for organic synthesis and medicinal chemistry. Although there are various mature systems for synthesizing five- or six-membered polycycles, a catalytic platform for accessing diverse cycloheptanoid-containing polycyclic scaffolds is lacking. Herein, we describe a method for copper-catalyzed intramolecular 2-aminoallyl cation-diene (4 + 3) cycloaddition reactions.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Borch Department of Medicinal Chemistry, Purdue University, West Lafayette, IN, 47906, USA.
Fluoroalkyl arenes (Ar-R) are valuable substructures present in several FDA-approved drugs, patents, agrochemicals, and materials, and complementary strategies that enable access to a broad spectrum of Ar-R compounds benefit these applied fields. Herein, we report a deoxyfluoroalkylation-aromatization strategy to convert cyclohexanones into broad-spectrum Ar-R containing compounds. Generally, the fluoroalkyl sources were activated to participate in a 1,2-addition reaction followed by aromatization in a sequence that contrasts more common preparations of these Ar-R compounds, such as (i) transition-metal catalyzed cross-coupling reactions of aryl electrophiles and nucleophiles, and (ii) radical fluoroalkylation reactions of C-H bonds of arenes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!