Many temperate ectotherms undergo thermal acclimation to remain functional over a wide range of body temperatures, but few studies have investigated whether populations of a single species have evolved differences in the thermal plasticity of locomotor performance. Therefore, we asked whether the thermal plasticity of locomotor performance has diverged between northern and southern populations of eastern newts (Notophthalmus viridescens). We acclimated eastern newts from Florida and Maine to cold (6 °C) or warm (28 °C) conditions for 12 weeks. Following acclimation, we measured the burst speed of newts at 6, 11.5, 17, 22.5, 28, and 33.5 °C. We also measured the activities of creatine kinase (CK) and lactate dehydrogenase (LDH) in skeletal muscle of newts. The newts from Maine were better able to acclimate to low temperature compared to newts from Florida. Regardless of acclimation, the thermal sensitivity of burst speed was higher in the Florida compared to the Maine population. In general, newts from Maine performed better at low temperatures, whereas newts from Florida performed better at high temperatures. The activities of CK and LDH were lower in cold compared to warm-acclimated newts in the Florida population, but acclimation did not affect the activities of these enzymes in the Maine population. The activities of CK and LDH do not explain differences in the thermal plasticity of locomotor performance between populations. Our results demonstrate that the thermal sensitivity and plasticity of locomotor performance differ between northern and southern populations of eastern newts, suggesting that these traits readily adapt to the thermal environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00360-014-0869-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!