A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Some aspects of salinity responses in peppermint (Mentha × piperita L.) to NaCl treatment. | LitMetric

Salinity is a major stress that adversely affects plant growth and crop production. Understanding the cellular responses and molecular mechanisms by which plants perceive and adopt salinity stress is of fundamental importance. In this work, some of the cellular signaling events including cell death, reactive oxygen species (ROS) generation, and the behaviors of organelles were analyzed in a salt-tolerant species (Keyuan-1) of peppermint (Mentha × piperita L.) under NaCl treatment. Our results showed that 200 mM NaCl treatment elicited a distinct progress of cell death with chromatin condensation and caspase-3-like activation and a dramatic burst of ROS which was required for the execution of cell death. The major ROS accumulation occurred in the mitochondria and chloroplasts, which were the sources of ROS production under NaCl stress. Moreover, mitochondrial activity and photosynthetic capacity also exhibited the obvious decrease in the ROS-dependent manner under 200 mM NaCl stress. Furthermore, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), and dehydroascorbate reductase (DHAR) as well as the contents of ascorbate and glutathione changed in the concentration-dependent manner under NaCl stress. Altogether, our data showed the execution of programmed cell death (PCD), the ROS dynamics, and the behaviors of organelles especially mitochondria and chloroplasts in the cellular responses of peppermint to NaCl stress which can be used for the tolerance screening, and contributed to the understanding of the cellular responses and molecular mechanisms of peppermint to salinity stress, providing the theoretic basis for the further development and utilization of peppermint in saline areas.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00709-014-0728-7DOI Listing

Publication Analysis

Top Keywords

cell death
16
nacl stress
16
nacl treatment
12
cellular responses
12
responses peppermint
8
peppermint mentha
8
mentha piperita
8
piperita nacl
8
understanding cellular
8
responses molecular
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!