Theoretical studies on the folding mechanisms for different DNA G-quadruplexes.

Adv Exp Med Biol

Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, China.

Published: March 2015

AI Article Synopsis

  • G-quadruplex DNA, found in human telomeres, is a potential target for cancer treatment, and this study investigates its folding mechanisms using energy landscape theory.
  • The research focuses on three G-quadruplex forms - thrombin aptamer, Form 1, and Form 3 - utilizing an all-atom Gō-model for simulations.
  • Findings reveal that these G-quadruplexes fold through a two-state mechanism, with Form 3 exhibiting a higher folding energy barrier, indicating it has greater structural stability compared to the other two forms.

Article Abstract

The G-quadruplex DNA formed by the stack of guanines in human telomere sequence is a promising anticancer target. In this study we used the energy landscape theory to elucidate the folding mechanisms for the thrombin aptamer, Form 1 and Form 3 G-quadruplexes. The three G-quadruplexes were simulated with all-atom Gō-model. Results show that, the three G-quadruplexes fold through a two-state mechanism. In the initial stage of the folding process, the compact structures are formed. The G-quadruplexes need to form G-triplex structures on the basis of the compact structures before folding to the native states. The folding free energy barrier of Form 3 G-quadruplex is higher than thrombin aptamer and Form 1, which shows that the structure of Form 3 G-quadruplex has more stability than the other two G-quadruplexes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-94-017-9245-5_10DOI Listing

Publication Analysis

Top Keywords

folding mechanisms
8
thrombin aptamer
8
aptamer form
8
three g-quadruplexes
8
compact structures
8
form g-quadruplex
8
g-quadruplexes
6
form
6
folding
5
theoretical studies
4

Similar Publications

Ischemia-reperfusion injuries are known to cause a range of retinal pathologies, including diabetic retinopathy, glaucoma, retinal vascular occlusions, and other vaso-occlusive conditions. This manuscript presents a method for inducing ischemia-reperfusion injury in a mouse model. The method utilized anterior chamber cannulation attached to a saline reservoir, generating hydrostatic pressure to raise the intraocular pressure to 90-100 mmHg.

View Article and Find Full Text PDF

Hsf1 is essential for proteotoxic stress response in smyd1b-deficient embryos and fish survival under heat shock.

FASEB J

January 2025

Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA.

Molecular chaperones play critical roles in post-translational maintenance in protein homeostasis. Previous studies have shown that loss of Smyd1b function results in defective myofibril organization and dramatic upregulation of heat shock protein gene (hsp) expression in muscle cells of zebrafish embryos. To investigate the molecular mechanisms and functional importance of this stress response, we characterized changes of gene expression in smyd1b knockdown and knockout embryos using RNA-seq.

View Article and Find Full Text PDF

GABA/Glutamate Neuron Differentiation Imbalance and Increased AKT/mTOR Signaling in CNTNAP2 Cerebral Organoids.

Biol Psychiatry Glob Open Sci

January 2025

Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, Ioannina, Greece.

Background: The polygenic nature of autism spectrum disorder (ASD) requires the identification of converging genetic pathways during early development to elucidate its complexity and varied manifestations.

Methods: We developed a human cerebral organoid model from induced pluripotent stem cells with targeted genome editing to abolish protein expression of the ASD risk gene.

Results: CNTNAP2 cerebral organoids displayed accelerated cell cycle, ventricular zone disorganization, and increased cortical folding.

View Article and Find Full Text PDF

Metallo-supramolecular complexes enantioselectively target monkeypox virus RNA G-quadruplex and bolster immune responses against MPXV.

Natl Sci Rev

January 2025

Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.

The Mpox virus (MPXV) has emerged as a formidable orthopoxvirus, posing an immense challenge to global public health. An understanding of the regulatory mechanisms of MPXV infection, replication and immune evasion will benefit the development of novel antiviral strategies. Despite the involvement of G-quadruplexes (G4s) in modulating the infection and replication processes of multiple viruses, their roles in the MPXV life cycle remain largely unknown.

View Article and Find Full Text PDF

Neoplastic transformation of B cells of the post-germinative center can lead to oncohematological dyscrasias, which often results in an abnormal production of monoclonal immunoglobulin light chains. The non-physiological production of large amounts of IgG light chains leads to the formation of extracellular deposits called 'aggregomas' and rare conditions such as light chain crystal deposition disease. Kidney manifestations and heavy-chain deposition disease can also occur in plasma cell dyscrasias, emphasizing the role of IgG misfolding and aggregation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!