AI Article Synopsis

  • The formation of islet amyloid polypeptide (IAPP) is linked to pancreatic β-cell dysfunction, particularly human IAPP (hIAPP) which aggregates easily and complicates structural analysis.
  • The rat version of IAPP (rIAPP), differing by six amino acids, does not aggregate and has been studied as a model for hIAPP, yet its exact structure in solution is still not clearly defined.
  • Utilizing techniques like small angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR), and molecular dynamics simulations (MD), researchers established that rIAPP has a random-coiled nature with some helical characteristics in its N-terminus, aiding in understanding disordered proteins.

Article Abstract

The process of islet amyloid polypeptide (IAPP) formation and the prefibrillar oligomers are supposed to be one of the pathogenic agents causing pancreatic β-cell dysfunction. The human IAPP (hIAPP) aggregates easily and therefore, it is difficult to characterize its structural features by standard biophysical tools. The rat version of IAPP (rIAPP) that differs by six amino acids when compared with hIAPP, is not prone to aggregation and does not form amyloid fibrils. Similar to hIAPP it also demonstrates random-coiled nature in solution. The structural propensity of rIAPP has been studied as a hIAPP mimic in recent works. However, the overall shape of it in solution still remains elusive. Using small angle X-ray scattering (SAXS) measurements combined with nuclear magnetic resonance (NMR) and molecular dynamics simulations (MD) the solution structure of rIAPP was studied. An unambiguously extended structural model with a radius of gyration of 1.83 nm was determined from SAXS data. Consistent with previous studies, an overall random-coiled feature with residual helical propensity in the N-terminus was confirmed. Combined efforts are necessary to unambiguously resolve the structural features of intrinsic disordered proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-94-017-9245-5_7DOI Listing

Publication Analysis

Top Keywords

islet amyloid
8
amyloid polypeptide
8
structural features
8
riapp studied
8
extended structure
4
structure rat
4
rat islet
4
solution
4
polypeptide solution
4
solution process
4

Similar Publications

The incretins (glucose-dependent insulinotropic polypeptide [GIP] and glucagon-like peptide-1 [GLP-1]), along with amylin/islet amyloid polypeptide (IAPP) and insulin-degrading enzyme (IDE), are hormones/enzymes that have been pharmacological targets, such as dipeptidyl peptidase-4 (DPP-4) inhibitors, due to their insulinotropic actions. Physical training is recommended as a treatment for type 2 diabetes mellitus (T2DM); however, its effects on the concentrations of these hormones/enzymes are not well known. Thus, the present study aimed to evaluate the effects of combined training (CT) on the concentrations of hormones/enzymes with insulinotropic actions in individuals with T2DM and overweight.

View Article and Find Full Text PDF

Introduction: The progression of type 2 diabetes in humans appears to be linked to the loss of insulin-producing β-cells. One of the major contributors to β-cell loss is the formation of toxic human IAPP amyloid (hIAPP, Islet Amyloid Polypeptide, amylin) in the pancreas. Inhibiting the formation of toxic hIAPP amyloid could slow, if not prevent altogether, the progression of type 2 diabetes.

View Article and Find Full Text PDF

Background: Breast cancer (BRCA) is the most prevalent type of cancer worldwide. As a highly heterogeneous cancer, it has a high recurrence rate. Since its biological behavior can be regulated by immunity and cuprotosis, so exploring potential therapeutic target to mediate immunity and cuprotosis is of great significance for BRCA therapy.

View Article and Find Full Text PDF

Anti-diabetic drug pioglitazone reduces Islet amyloid aggregation overload in the Drosophila neuronal cells.

Naunyn Schmiedebergs Arch Pharmacol

December 2024

Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.

Amyloid-proteinopathy is observed in type 2 diabetes, where Islet amyloid polypeptide is secreted atypically and impedes cellular homeostasis. The thiazolidinediones family is reported to influence amyloid-beta aggregations. However, research on drug-based stimulation of insulin signaling to alleviate Islet amyloid aggregations is lacking.

View Article and Find Full Text PDF

Heterotypic Interactions of Amyloid β and the Islet Amyloid Polypeptide Produce Mixed Aggregates with Non-Native Fibril Structure.

J Phys Chem Lett

December 2024

Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States.

Amyloid aggregates are hallmarks of the pathology of a wide range of diseases, including type 2 diabetes (T2D) and Alzheimer's disease (AD). Much epidemiological and pathological evidence points to significant overlap between AD and T2D. Individuals with T2D have a higher likelihood of developing AD; moreover, colocalized aggregates of amyloid β (Aβ) and the islet amyloid polypeptide (IAPP), the two main peptides implicated in the formation of toxic amyloid aggregates in AD and T2D, have also been identified in the brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!