Ferromagnetism of Fe3Sn and alloys.

Sci Rep

Materials Science and Technology Division, Oak Ridge National Laboratory.

Published: November 2014

Hexagonal Fe(3)Sn has many of the desirable properties for a new permanent magnet phase with a Curie temperature of 725 K, a saturation moment of 1.18 MA/m. and anisotropy energy, K1 of 1.8 MJ/m(3). However, contrary to earlier experimental reports, we found both experimentally and theoretically that the easy magnetic axis lies in the hexagonal plane, which is undesirable for a permanent magnet material. One possibility for changing the easy axis direction is through alloying. We used first principles calculations to investigate the effect of elemental substitutions. The calculations showed that substitution on the Sn site has the potential to switch the easy axis direction. However, transition metal substitutions with Co or Mn do not have this effect. We attempted synthesis of a number of these alloys and found results in accord with the theoretical predictions for those that were formed. However, the alloys that could be readily made all showed an in-plane easy axis. The electronic structure of Fe(3)Sn is reported, as are some are magnetic and structural properties for the Fe(3)Sn(2), and Fe(5)Sn(3) compounds, which could be prepared as mm-sized single crystals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228330PMC
http://dx.doi.org/10.1038/srep07024DOI Listing

Publication Analysis

Top Keywords

easy axis
12
permanent magnet
8
axis direction
8
ferromagnetism fe3sn
4
fe3sn alloys
4
alloys hexagonal
4
hexagonal fe3sn
4
fe3sn desirable
4
desirable properties
4
properties permanent
4

Similar Publications

Writing and drawing tilts after right hemisphere stroke are signs of a wrong verticality representation.

Ann Phys Rehabil Med

January 2025

University Grenoble Alpes, UMR CNRS 5105 Neuropsychology and NeuroCognition, CHU Grenoble Alpes, Dept of NeuroRehabilitation South Hospital, Cs 10217-38043 Grenoble cedex 9, France. Electronic address:

Background: Many signs of spatial dysgraphia and drawing errors after right hemispheric stroke (RHS) have been attributed to spatial neglect or impaired sensory feedback. Counterclockwise (contralesional) tilts of graphomotor productions remained to be explained.

Objective: To test whether graphomotor tilts stem from a tilted representation of verticality transposed to the top/bottom axis of the sheet of paper, using data from the DOBRAS cohort.

View Article and Find Full Text PDF

We present a implementation method of light-sheet microscopy utilizing a highly miniaturized device that produces light-sheet illumination while immersed in the sample container. Our miniaturized plane illuminator (MPI) internally equips a two-axis beam-scanning mechanism based on a magnetostatically driven optical fiber cantilever. A light sheet is produced by fast scanning of the focused beam in an axis while the illumination plane can move in the other axis for positioning and 3D imaging.

View Article and Find Full Text PDF

Stabilizing large easy-axis type magnetic anisotropy in molecular complexes is a challenging task, yet it is crucial for the development of information storage devices and applications in molecular spintronics. Achieving this requires a deep understanding of electronic structure and the relationships between structure and properties to develop magneto-structural correlations that are currently unexplored in the literature. Herein, a series of five-coordinate distorted square pyramidal Co complexes [Co(L)(X)].

View Article and Find Full Text PDF

Non-volatile electronic memory elements are very attractive for applications, not only for information storage but also in logic circuits, sensing devices and neuromorphic computing. Here, a ferroelectric film of guanine nucleobase is used in a resistive memory junction sandwiched between two different ferromagnetic films of Co and CoCr alloys. The magnetic films have an in-plane easy axis of magnetization and different coercive fields whereas the guanine film ensures a very long spin transport length, at 100 K.

View Article and Find Full Text PDF

Nematic liquid crystal flow driven by time-varying active surface anchoring.

Soft Matter

January 2025

Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia.

We demonstrate the generation of diverse material flow regimes in nematic liquid cells as driven by time-variable active surface anchoring, including no-net flow, oscillatory flow, steady flow, and pulsating flow. Specifically, we numerically simulate a passive nematic fluid inside a cell bounded with two flat solid boundaries at which the time-dependent anchoring is applied with the dynamically variable surface anchoring easy axis. We show that different flow regimes emerge as the result of different anchoring driving directions ( co-rotating or counter-rotating) and relative phase of anchoring driving.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!