Cerebral Networks Linked to Itch-related Sensations Induced by Histamine and Capsaicin.

Acta Derm Venereol

Department of Physiology and Pathophysiology, FAU Erlangen/Nuremberg, Universitaetsstr. 17, DE-91054 Erlangen, Germany.

Published: July 2015

This functional magnetic resonance imaging (fMRI) study explored the central nervous processing of itch induced by histamine and capsaicin, delivered via inactivated cowhage spicules, and the influence of low-dose naltrexone. Scratch bouts were delivered at regular intervals after spicule insertion in order temporarily to suppress the itch. At the end of each trial the subjects rated their itch and scratch-related sensations. Stepwise multiple regression analyses were employed for identifying cerebral networks contributing to the intensities of "itching", "burning", "stinging", "pricking" and "itch relief by scratching". In the capsaicin experiments a network for "burning" was identified, which included the posterior insula, caudate and putamen. In the histamine experiments networks for "itching" and "itch relief" were found, which included operculum, hippocampus and amygdala. Naltrexone generally reduced fMRI activation and the correlations between fMRI signal and ratings. Furthermore, scratching was significantly less pleasant under naltrexone.

Download full-text PDF

Source
http://dx.doi.org/10.2340/00015555-2006DOI Listing

Publication Analysis

Top Keywords

cerebral networks
8
induced histamine
8
histamine capsaicin
8
networks linked
4
linked itch-related
4
itch-related sensations
4
sensations induced
4
capsaicin functional
4
functional magnetic
4
magnetic resonance
4

Similar Publications

Impact of LITAF on Mitophagy and Neuronal Damage in Epilepsy via MCL-1 Ubiquitination.

CNS Neurosci Ther

January 2025

Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.

Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.

Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.

View Article and Find Full Text PDF

Associations of Tai Chi With Depression and Anxiety Among Older Adults: Nationwide Study Findings From a Network Perspective.

J Geriatr Psychiatry Neurol

January 2025

Unit of Psychiatry, Department of Public Health and Medicinal Administration, & Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SAR, China.

Within the global population, depression and anxiety are common among older adults. Tai Chi is believed to have a positive impact on these disturbances. This study examined the network structures of depression and anxiety among older Tai Chi practitioners vs non-practitioners.

View Article and Find Full Text PDF

Background: Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI).

View Article and Find Full Text PDF

Background: Psilocybin therapy (PT) produces rapid and persistent antidepressant effects in major depressive disorder (MDD). However, the long-term effects of PT have never been compared with gold-standard treatments for MDD such as pharmacotherapy or psychotherapy alone or in combination.

Methods: This is a 6-month follow-up study of a phase 2, double-blind, randomised, controlled trial involving patients with moderate-to-severe MDD.

View Article and Find Full Text PDF

The connectome describes the complete set of synaptic contacts through which neurons communicate. While the architecture of the $\textit{C. elegans}$ connectome has been extensively characterized, much less is known about the organization of causal signaling networks arising from functional interactions between neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!