For at least 30 years cancer has been defined as a genetic disease and explained by the so-called somatic mutation theory (SMT), which has dominated the carcinogenesis field. Criticism of the SMT has recently greatly increased, although still not enough to force all SMT supporters to recognize its limits. Various researchers point out that cancer appears to be a complex process concerning a whole tissue; and that genomic mutations, although variably deleterious and unpredictably important in determining the establishment of the neoplastic phenotype, are not the primary origin for a malignant neoplasia. We attempt to describe the inadequacies of the SMT and demonstrate that epigenetics is a more logical cause of carcinogenesis. Many previous models of carcinogenesis fall into two classes: (i) in which some biological changes inside cells alone lead to malignancy; and (ii) requiring changes in stroma/extracellular matrix. We try to make clear that in the (ii) model genomic instability is induced by persistent signals coming from the microenvironment, provoking epigenetic and genetic modifications in tissue stem cells that can lead to cancer. In this perspective, stochastic mutations of DNA are a critical by-product rather then the primary cause of cancer. Indirect support for such model of carcinogenesis comes from the in vitro and vivo experiments showing apparent 'reversion' of cancer phenotypes obtained via physiological factors of cellular differentiation (cytokines and other signaling molecules) or drugs, even if the key mutations are not 'reversed'.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-014-3804-3DOI Listing

Publication Analysis

Top Keywords

cells lead
8
cancer
5
systemic paradigm
4
carcinogenesis
4
paradigm carcinogenesis
4
carcinogenesis linking
4
linking epigenetics
4
epigenetics genetics
4
genetics 30 years
4
30 years cancer
4

Similar Publications

Introduction: Chronic alcohol consumption and tobacco usage are major risk factors for esophageal squamous cell carcinoma (ESCC). Excessive tobacco and alcohol consumption lead to oxidative stress and the generation of reactive carbonyl species (RCS) which induce DNA damage and cell apoptosis. This phenomenon contributes to cell damage and carcinogenesis in various organs including ESCC.

View Article and Find Full Text PDF

Background: Cancer is characterized by unregulated cell proliferation, enabling it to invade and spread to different organs and tissues in the body. Cancer progression is intricately influenced by the complex dynamics within the tumor microenvironment (TME). The tumor microenvironment (TME) is a composite and dynamic network comprising cancer cells and various immune cells, including tumor-associated macrophages.

View Article and Find Full Text PDF

Polysaccharides from Yupingfeng granules ameliorated cyclophosphamide-induced immune injury by protecting intestinal barrier.

Int Immunopharmacol

December 2024

Sinopharm Group Guangdong Medi-World Pharmaceutical Co., Ltd., Guangzhou, China.

Immune injury is the main side effect caused by cyclophosphamide and the disruption of the intestinal barrier may be an important cause. Yupingfeng granules have been reported to have immunomodulatory effects and polysaccharides are important components of them. This study aimed to investigate the ameliorative effect of polysaccharides from Yupingfeng granules (YPFP) on cyclophosphamide induced immune injury and reveal their potential mechanisms based on its protective effect on the intestine.

View Article and Find Full Text PDF

Development of a novel NIR-II fluorescence probe for monitoring serum albumin fluctuation in cerebra neurotoxicity induced by manganese exposure.

J Hazard Mater

December 2024

Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China. Electronic address:

Manganese is essential for various biological functions; however, excessive exposure can lead to significant health risks, particularly brain neurotoxicity. Understanding manganese-induced alterations in brain serum protein levels and brain function is crucial for elucidating the mechanisms underlying manganese neurotoxicity. To address this, we developed a novel NIR-II fluorescent probe, RSM, characterized by robust binding to serum albumin and high sensitivity.

View Article and Find Full Text PDF

Spatial, temporal and numerical regulation of polar flagella assembly in Pseudomonas putida.

Microbiol Res

December 2024

Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla ES-41013, Spain; Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla ES-41013, Spain. Electronic address:

The Gram-negative bacterium Pseudomonas putida bears a tuft of flagella at a single cell pole. New flagella must be assembled de novo every cell cycle to secure motility of both daughter cells. Here we show that the coordinated action of FimV, FlhF and FleN sets the location, timing and number of flagella assembled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!