Natural killer (NK) cells may modulate the pathogenesis of primary HIV-1 infection. However, the relationship between the number and function of NK cells during an acute HIV-1 infection and HIV-1 disease progression remains to be elucidated. In this study, we enrolled two distinct patient groups. One group progressed to where their CD4 cell counts fell below 200 cells/μl within 2 years (CD4Low group), while the CD4 cell counts of the other group remained above 500 cells/μl for over 2 years (CD4High group). We compared the number and function of NK cells during the first year of HIV-1 infection between the two distinct groups. We found that the number of total NK cells and the number of cells in the CD56(dim)CD16(pos) subset rapidly decreased in both groups during early HIV-1 infection. The absolute number of total NK cells and CD56(dim)CD16(pos) NK cells was significantly higher in the CD4High group when compared to the CD4Low group during the first month of infection. No significant difference between the numbers of CD56(bright)CD16(neg) NK cells of the two groups was observed. However, more CD56(neg)CD16(pos) NK cells were found in the CD4Low group than in the CD4High group. We also found that NK cell function increased within the first 3 months of HIV-1 infection in the CD4High group and then exhibited a decreasing trend. However, in the CD4Low group, NK cell function did not increase significantly within the first 3 months of HIV-1 infection but then gradually increased. We concluded, therefore, that robust NK functioning cells that are present during an acute HIV-1 infection might be beneficial in controlling HIV-1 disease progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/aid.2014.0083 | DOI Listing |
Viruses
January 2025
Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
Second-generation integrase strand transfer inhibitors (INSTIs) are strongly recommended for people living with HIV-1 (PLWH). The emergence of resistance to second-generation INSTIs has been infrequent and has not yet been a major issue in high-income countries. However, the delayed rollouts of these INSTIs in low- to middle-income countries during the COVID-19 pandemic combined with increased transmission of drug-resistant mutants worldwide are leading to an increase in INSTI resistance.
View Article and Find Full Text PDFViruses
January 2025
Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia.
Anogenital inflammation is a critical risk factor for HIV acquisition. The primary preventative HIV intervention, pre-exposure prophylaxis (PrEP), is ineffective in blocking transmission in anogenital inflammation. Pre-existing sexually transmitted diseases (STIs) and anogenital microbiota dysbiosis are the leading causes of inflammation, where inflammation is extensive and often asymptomatic and undiagnosed.
View Article and Find Full Text PDFViruses
January 2025
Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz (IOC), FIOCRUZ, Rio de Janeiro 21040-360, Brazil.
Background: Severe COVID-19 presents a variety of clinical manifestations associated with inflammatory profiles. People living with HIV (PLWH) could face a higher risk of hospitalization and mortality from COVID-19, depending on their immunosuppression levels. This study describes inflammatory markers in COVID-19 clinical outcomes with and without HIV infection.
View Article and Find Full Text PDFViruses
January 2025
Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
Microvirin is a lectin molecule known to have monovalent interaction with glycoprotein gp120. A previously reported high-resolution structural analysis defines the mannobiose-binding cavity of Microvirin. Nonetheless, structure does not directly define the energetics of binding contributions of protein contact residues.
View Article and Find Full Text PDFViruses
January 2025
Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé P.O. Box 3077, Cameroon.
Islatravir (ISL) is a novel antiretroviral that inhibits HIV-1 reverse transcriptase translocation. The M184V mutation, known to reduce ISL's viral susceptibility in vitro, could arise from prolonged exposure to nucleoside reverse transcriptase inhibitors (NRTI) (3TC). This study evaluated the predictive efficacy of ISL and identified potentially active antiretrovirals in combination among treatment-experienced patients in Cameroon, where NRTIs (3TC) have been the backbone of ART for decades now.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!