Evidence for the involvement of the Substance P (SP)/NK1 receptor system in the development and progression of cancer strongly supports its potential as a therapeutic target in malignancies. Novel strategies for approaching cancer treatment are urgently required particularly with regard to tumours of the central nervous system (CNS), which are notoriously difficult to effectively treat and associated with extremely poor prognosis for many patients. This is due, in part, to the presence of the highly specialised blood-brain barrier, which is known to restrict common treatments such as chemotherapy and hinder early tumour diagnosis. Additionally, tumours of the CNS are difficult to surgically resect completely, often contributing to the resurgence of the disease many years later. Interestingly, despite the presence of the blood-brain barrier, circulating tumour cells are able to gain entry to the brain and form secondary brain tumours; however, the underlying mechanisms of this process remain unclear. Tachykinins, in particular Substance P, have been implicated in early blood-brain barrier disruption via neurogenic inflammation in a number of other CNS pathologies. Recent evidence also suggests that Substance P may play a central role in the development of CNS tumours. It has been well established that a number of tumour cells express Substance P, NK1 receptors and mRNA for the tachykinin NK1 receptor. This increase in the Substance P/NK1 receptor system is known to induce proliferation and migration of tumour cells as well as stimulate angiogenesis, thus contributing to tumour progression. Accordingly, the NK1 receptor antagonist presents a novel target for anti-cancer therapy for which a number of patents have been filed. This review will examine the role of Substance P in the development of CNS tumours and its potential application as an anti-cancer agent.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1574889809666141111142740DOI Listing

Publication Analysis

Top Keywords

blood-brain barrier
12
tumour cells
12
brain tumours
8
receptor system
8
development cns
8
cns tumours
8
nk1 receptor
8
substance
7
tumours
6
cns
5

Similar Publications

Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.

Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.

View Article and Find Full Text PDF

The sphingosine-1-phosphate-5 (S1P) receptor is one of the five membrane G protein-coupled receptors that are activated by the lysophospholipid, sphingosine-1-phosphate, resulting in regulation of many cellular processes. S1P receptors are located on oligodendrocytes and are proposed to influence oligodendrocyte physiology. Understanding S1P modulation during processes such as remyelination could have potential applications for demyelinating CNS disorders such as multiple sclerosis (MS).

View Article and Find Full Text PDF

Poor aqueous solubility and bioavailability limit the translation of new drug candidates into clinical applications. Nanocrystal formulations offer a promising approach for improving the dissolution rate and saturation solubility. These formulations are applicable for various routes of administration, with each presenting unique opportunities and challenges posed by the physiological barriers.

View Article and Find Full Text PDF

In vivo three-photon fluorescence imaging of mouse brain vasculature labeled by Evans blue excited at the NIR-III window.

Biomed Opt Express

January 2025

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.

Multiphoton fluorescence microscopy (MFM), renowned for its noninvasiveness and high spatiotemporal resolution, is extensively applied in brain structure imaging in vivo. Three-photon fluorescence (3PF) imaging, excited at the NIR-III window, can penetrate the deepest mouse cerebrovascular. Evans blue, a substance known for its low toxicity, high water solubility, and resistance to metabolism, is frequently employed to assess blood-brain barrier (BBB) permeability.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive disorder that affects the nervous system and causes regions of the brain to deteriorate. In this study, we investigated the effects of MR-guided focused ultrasound (MRgFUS) for the delivery of human mesenchymal stem cells (MSCs) on the 6-hydroxydopamine (6-HODA)-induced PD rat model. MRgFUS-induced blood-brain barrier (BBB) permeability modulation was conducted using an acoustic controller with the targets at the striatum (ST) and SN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!