The objective of this study is to describe the morphology, molecular structure, and chemistry of amphibole fibers from lung samples from workers in the chrysotile mines at Asbestos and Thetford Mines, Quebec. A fibrous tremolite-actinolite contaminant in an asbestos ore sample from the deposit at Asbestos was used for comparison. Lattice imaging was performed using high-resolution transmission electron microscopy (HRTEM). Silica-rich amorphous coatings (SIRA) that may be related to carcinogenesis are noted on all of the HRTEM photographs of fibers retained in lung, but not on fiber surfaces of the bulk comparison sample. Fibers found in lung samples and in a bulk comparison sample are produced primarily by splitting of thicker crystals and, as such, might not be considered asbestos fibers on the basis of certain mineralogical criteria. Implications of SIRA coatings with respect to carcinogenesis are worthy of further study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/19338244.2014.918928 | DOI Listing |
Langmuir
January 2025
School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, MH 416004, India.
In this study, we report the modification of a monolithic γ-aluminum oxy-hydroxide (γ-AlOOH) aerogel with cellulose nanofibers (CNFs) using the sol-gel method via supercritical drying. The optimized 2% CNF (w/w) results in a monolithic CNF-γ-AlOOH that is amorphous in nature, along with C-C and C-O-C functional groups. Transmission electron microscopy (TEM) images of the as-synthesized CNF-γ-AlOOH showed CNF embedded in the γ-AlOOH aerogel.
View Article and Find Full Text PDFPLoS One
January 2025
Precision Laboratory of Vascular Medicine, Shanxi Cardiovascular Hospital Affiliated Shanxi Medical University, Taiyuan, PR China.
Background: Myocardial ischemia-reperfusion injury (MIRI) is an important complication in the treatment of heart failure, and its treatment has not made satisfactory progress. Nitroxyl (HNO) showed protective effects on the heart failure, however, the effect and underlying mechanism of HNO on MIRI remain largely unclear.
Methods: MIRI model in this study was established to induce H9C2 cell injury through hypoxia/reoxygenation (H/R) in vitro.
J Vis Exp
January 2025
Department of Cardiac Surgery, the First Affiliated Hospital of Xinjiang Medical University;
The objective of this study was to investigate the cardioprotective effects of Munziq on abnormal body fluid myocardial ischemia-reperfusion injury (MIRI) and its underlying mechanism.Normal rats and rats with abnormal body fluid (ABF) were pre-treated with Munziq for 21 days. Following this, MIRI models were established.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.
We synthesized rigid, macromolecular brushes with well-defined and quantized brush lengths on a gold nanoparticle substrate by using a macromolecular "grafting from" approach. The macromonomers used in these brushes were thiol- and maleimide-functionalized peptide coiled coil "bundlemers" that fold into discrete 4 nm × 2 nm (length × diameter) cylindrical nanoparticles. With each added peptide macromonomer layer, brush thickness increased by approximately the length of a single bundlemer nanoparticle.
View Article and Find Full Text PDFRSC Adv
January 2025
Centre for Nano Bio Polymer Science and Technology, Department of Physics, St. Thomas College Palai Kerala 686574 India +919446126926.
We report a green approach to prepare carbon dots (CDs) with fresh tomatoes as carbon sources and amino acids as dopants (ACDs) by a microwave assisted method. The synthesised CDs were analysed by UV-visible absorption spectroscopy, photoluminescence spectroscopy, high resolution transmission electron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photo electron spectroscopy. An MTT assay was used to evaluate the cytotoxicity of CDs toward L929 cells and found that CDs exhibit low cytotoxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!