A comparative analysis of three non-invasive human-machine interfaces for the disabled.

Front Neurorobot

Robotics and Mechatronics Center, German Aerospace Center (DLR), Weßling , Germany.

Published: November 2014

In the framework of rehabilitation robotics, a major role is played by the human-machine interface (HMI) used to gather the patient's intent from biological signals, and convert them into control signals for the robotic artifact. Surprisingly, decades of research have not yet declared what the optimal HMI is in this context; in particular, the traditional approach based upon surface electromyography (sEMG) still yields unreliable results due to the inherent variability of the signal. To overcome this problem, the scientific community has recently been advocating the discovery, analysis, and usage of novel HMIs to supersede or augment sEMG; a comparative analysis of such HMIs is therefore a very desirable investigation. In this paper, we compare three such HMIs employed in the detection of finger forces, namely sEMG, ultrasound imaging, and pressure sensing. The comparison is performed along four main lines: the accuracy in the prediction, the stability over time, the wearability, and the cost. A psychophysical experiment involving ten intact subjects engaged in a simple finger-flexion task was set up. Our results show that, at least in this experiment, pressure sensing and sEMG yield comparably good prediction accuracies as opposed to ultrasound imaging; and that pressure sensing enjoys a much better stability than sEMG. Given that pressure sensors are as wearable as sEMG electrodes but way cheaper, we claim that this HMI could represent a valid alternative/augmentation to sEMG to control a multi-fingered hand prosthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209885PMC
http://dx.doi.org/10.3389/fnbot.2014.00024DOI Listing

Publication Analysis

Top Keywords

pressure sensing
12
comparative analysis
8
ultrasound imaging
8
imaging pressure
8
semg
7
analysis three
4
three non-invasive
4
non-invasive human-machine
4
human-machine interfaces
4
interfaces disabled
4

Similar Publications

Color and form are closely related to our daily lives and can directly and rapidly affect people's emotions, and it is of great significance to study the effects of color and form of garden plants on the body and mind of urban residents. In this study, the shrub L., which has rich germplasm resources, was selected as the research object.

View Article and Find Full Text PDF

Capsaicin, known for its antioxidant and antibacterial properties, may mitigate oxidative stress and inflammation associated with exercise-induced muscle damage (EIMD). This study evaluates the efficacy of capsaicin supplementation in reducing delayed-onset muscle soreness (DOMS) and enhancing strength and power in collegiate male futsal players. A randomized, double-blind, placebo-controlled crossover design was used.

View Article and Find Full Text PDF

A novel hollow capacitive wind pressure sensor is for the first time proposed. The sensing element of the proposed sensor uses a non-parallel plate variable capacitor, whose movable electrode plate uses a transversely uniformly loaded annular conductive membrane with a fixed outer edge and a rigid inner edge (acting as the wind pressure sensitive element of the sensor). Due to the unique hollow configuration of the proposed sensor, it can be used alone to detect the pressure exerted by fast-moving air in the atmosphere or by fast-moving air or gas, etc.

View Article and Find Full Text PDF

This research sought to explore the impact of ultrasonic pretreatment on the physicochemical characteristics of proteins derived from eggshell membranes through enzymatic extraction. Response surface methodology (RSM) and Box-Behnken design were employed to identify the ideal conditions for the extraction process. The optimal parameters determined were enzyme usage at 4.

View Article and Find Full Text PDF

To ensure ammunition safety, a protective structure and pressure detection system are essential; however, there is a lack of an accurate constitutive model to describe the mechanical response characteristics of protective structures composed of various polymer materials. In this work, a constitutive model for the composite structure based on the superposition principle is successfully constructed derived from the quasi-static compression behavior of rigid polyurethane foam (RPUF), silicone rubber foam (SRF), and flexible pressure sensors (FPSs) through experimental investigations. The constitutive model accurately reflects the influence of each type of polymer foam on the mechanical performance of composite structures, underscoring the significance of thickness ratios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!