Interpenetration is an intrinsic behaviour for the porous coordination networks. To prevent the interpenetration, a common strategy is the imposition of geometric or steric restrictions by incorporating bulky moieties into organic tectons. So far, most of the available incorporations have been achieved through a covalent connection, while few involved in the non-covalent weak interactions. In this paper, we have reported that such interpenetration can be prevented by the less common lone pair-π interactions. By imposing the lone pair-π interactions through the addition of lone-pair-bearing N-methylpyrrolidin-2-one or iodine, combinations of rigid naphthalene diimide tectons bearing two divergently oriented pyridyl units at both imide extremities with ZnSiF6 led to non-interpenetrated cuboid 3-D coordination networks that should have been interpenetrated. In addition, such close-contacting lone pair-π interactions between electron donors and acceptors have also been demonstrated to play a key role in their photochromic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4dt03124e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!