A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Induction of neural tissue markers by micronized human spinal cord implants. | LitMetric

Induction of neural tissue markers by micronized human spinal cord implants.

J Neurosci Res

Department of Psychiatry and Biobehavioral Science, UCLA School of Medicine, Los Angeles, California.

Published: March 2015

The osteoinductive capacity of biological noncellular material has been widely recognized. Studies using bone morphogenetic proteins and acellular bone matrix demonstrate that host mesenchymal cells can be readily transformed into osteoprogenitor cells. The current study sought to determine whether another biological noncellular material, human spinal cord matrix, could induce transformation of host cells into a neural lineage. We demonstrate the formation of neural tissue and the expression of neural-specific lineage markers in host cells colonizing implanted spinal cord fragments and adjacent tissue along with the lack of expression of nonneural lineage markers. These studies demonstrate that the inductive capacity of biological noncellular material is not limited to the osteogenic lineage and suggest that acellular spinal cord matrix could be used to generate host-derived cells for use in neural repair and regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.23505DOI Listing

Publication Analysis

Top Keywords

spinal cord
16
biological noncellular
12
noncellular material
12
neural tissue
8
human spinal
8
capacity biological
8
cord matrix
8
host cells
8
cells neural
8
lineage markers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!