Purpose: To evaluate PTV margins for hypofractionated IGRT of prostate comparing kV/kV imaging or CBCT.
Patients And Methods: Between 2009 and 2012, 20 patients with low- (LR), intermediate- (IR) and high-risk (HR) prostate cancer were treated with VMAT in supine position with fiducial markers (FM), endorectal balloon (ERB) and full bladder. CBCT's and kV/kV imaging were performed before and additional CBCT's after treatment assessing intra-fraction motion. CTVP for 5 patients with LR and CTVPSV for 5 patients with IR/HR prostate cancer were contoured independently by 3 radiation oncologists using MRI. The van Hark formula (PTV margin =2.5Σ +0.7σ) was applied to calculate PTV margins of prostate/seminal vesicles (P/PSV) using CBCT or FM.
Results: 172 and 52 CBCTs before and after RT and 507 kV/kV images before RT were analysed. Differences between FM in CBCT or in planar kV image pairs were below 1 mm. Accounting for both random and systematic uncertainties anisotropic PTV margins were 5-8 mm for P (LR) and 6-11 mm for PSV (IR/HR). Random uncertainties like intra-fraction and inter-fraction (setup) uncertainties were of similar magnitude (0.9-1.4 mm). Largest uncertainty was introduced by CTV delineation (LR: 1-2 mm, IR/HR: 1.6-3.5 mm). Patient positioning using bone matching or ERB-matching resulted in larger PTV margins.
Conclusions: For IGRT CBCT or kV/kV-image pairs with FM are interchangeable in respect of accuracy. Especially for hypofractionated RT, PTV margins can be kept in the range of 5 mm or below if stringent daily IGRT, ideally including prostate tracking, is applied. MR-based CTV delineation optimization is recommended.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4229608 | PMC |
http://dx.doi.org/10.1186/s13014-014-0229-z | DOI Listing |
J Med Imaging Radiat Oncol
January 2025
Department of Radiation Oncology, Townsville University Hospital, Townsville, Queensland, Australia.
Introduction: Prostate motion during external beam radiotherapy (EBRT) is common and typically managed using fiducial markers and cone beam CT (CBCT) scans for inter-fractional motion correction. However, real-time intra-fractional motion management is less commonly implemented. This study evaluated the extent of intra-fractional prostate motion using transperineal ultrasound (TPUS) and examined the impact of treatment time on prostate motion.
View Article and Find Full Text PDFClin Transl Radiat Oncol
March 2025
Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
Purpose: To use imaging data from stereotactic MR-guided online adaptive radiotherapy (SMART) of ultracentral lung tumors (ULT) for development of a safe non-adaptive approach towards stereotactic body radiotherapy (SBRT) of ULT.
Patients And Methods: Analysis is based on 19 patients with ULT who received SMART (10 × 5.0-5.
Radiat Oncol
January 2025
Department of Neurosurgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
Purpose: In this retrospective study, we aimed to evaluate the efficacy and incidence of radiation-induced brain necrosis (RBN) after volumetric modulated arc therapy-based stereotactic irradiation (VMAT-STI) for brain metastases.
Methods: In the 220 brain metastatic lesions included between January 2020 and June 2022, there were 1-9 concurrently treated lesions (median 1). A biologically effective dose (BED)10 of 80 Gy and a reduced BED10 of 50 Gy were prescribed to the gross tumor volume (GTV) and planning target volume (PTV) (PTV = GTV + 3 mm) margins, respectively.
Pract Radiat Oncol
December 2024
Department of Radiation Oncology, Willis Knighton Cancer Center, 2600 Kings Highway, Shreveport, Louisiana, USA 71103 &, Department of Clinical Research, University of Jamestown, Fargo, ND, USA. Electronic address:
Purpose: Motion management presents a significant challenge in thoracic stereotactic ablative radiotherapy (SABR). Currently, a 5.0 mm standard planning target volume (PTV) margin is widely used to ensure adequate dose to the tumor.
View Article and Find Full Text PDFFront Oncol
December 2024
Radiotherapy Department, Montpellier Regional Cancer Institute, Montpellier, France.
Introduction: Following a preliminary work validating the technological feasibility of an adaptive workflow with Ethos for whole-breast cancer, this study aims to clinically evaluate the automatic segmentation generated by Ethos.
Material And Methods: Twenty patients initially treated on a TrueBeam accelerator for different breast cancer indications (right/left, lumpectomy/mastectomy) were replanned using the Ethos emulator. The adaptive workflow was performed using 5 randomly selected extended CBCTs per patient.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!