Evaluation of the photolysis of pharmaceuticals within a river by 2 year field observations and toxicity changes by sunlight.

Environ Sci Process Impacts

Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan.

Published: December 2014

To improve the risk assessment of pharmaceuticals, it is helpful to know how rapidly they are removed from river water. Direct photolysis by sunlight could be an important process, but so far few studies have attempted to compare modeled with actual losses in a river. Therefore, we quantified natural attenuation by monitoring 56 pharmaceuticals and personal care products over 2 full years in a 2.6 km stretch of an urban river. In addition, to screen photoproducts, we used the Microtox test with Vibrio fischeri to evaluate changes in the toxicity of two photolabile pharmaceuticals, ketoprofen and diclofenac, under sunlight. During transport along the river stretch, ketoprofen and the photolabile pharmaceutical furosemide were attenuated by median values of 77% and 39%. The observed attenuation showed good agreement with photochemical attenuation estimated by an existing method at each sampling, suggesting that the method appeared to be effective for estimating the direct photolysis of the pharmaceuticals during river transport. The toxicity of diclofenac decreased under sunlight, while that of ketoprofen increased immediately after exposure (around 12 times in EC20) and remained high, indicating the existence of toxic and photostable photoproducts of ketoprofen. Therefore, ecological risks of photolabile pharmaceuticals may increase during river transport in some cases, indicating the necessity to incorporate their photoproducts into the estimation method.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4em00448eDOI Listing

Publication Analysis

Top Keywords

photolysis pharmaceuticals
8
pharmaceuticals river
8
direct photolysis
8
photolabile pharmaceuticals
8
river transport
8
river
7
pharmaceuticals
6
evaluation photolysis
4
river year
4
year field
4

Similar Publications

Trifluoroacetic acid (TFA) is a ubiquitous environmental contaminant; however, its sources are poorly constrained. One understudied source is from the photochemical reactions of aromatic compounds containing -CF moieties (aryl-CF) including many pharmaceuticals and agrochemicals. Here, we studied the aqueous photochemistry of 4-(trifluoromethyl)phenol (4-TFMP), a known transformation product of the pharmaceutical fluoxetine.

View Article and Find Full Text PDF

Carbon dots (CDs) mediated g-CN (CN) is a promising visible-light-driven semiconductor in catalyzing peroxymonosulfate (PMS) for aqueous contaminants remediation. However, the poor dispersibility of powered catalyst and its challenging recyclability impede their broader application. Herein, we embedded FeN bridge within the g-CN framework and immobilized g-CN gel beads (CA/FNCCN) through a 3D cross-linking process with sodium alginate.

View Article and Find Full Text PDF

Photocatalytic Degradation of Lincosamides in the Presence of Commercial Pigments: Kinetics, Intermediates, and Predicted Ecotoxicity.

Int J Mol Sci

December 2024

Department of General and Analytical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.

Lincomycin belongs to the antibiotics commonly used in veterinary medicine. Its residues are easily spread in the environment because of its physicochemical properties, including resistance to biodegradation and good solubility in water. One of the effective methods for the removal of lincomycin from wastewater is the photocatalytic process, but it is not widely used due to the price of photocatalysts.

View Article and Find Full Text PDF

In this work, Terminalia chebula leaf extract was used to synthesize CuO-CoO nanoparticles, which were then embedded in a rice straw biochar. This new biochar-based nano-catalyst is used to photocatalytically degrade a variety of dyes (Eosin Y, Trypan Blue, Crystal Violet, Methylene Blue, Brilliant Green), as well as a binary mixture of Eosin Y and Trypan Blue dyes. It is also used for the catalytic reduction of nitro compounds (4-NP, 3-NP, and Picric acid).

View Article and Find Full Text PDF

MXene-based composite photocatalysts for efficient degradation of antibiotics in wastewater.

Sci Rep

December 2024

Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.

MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!