In many experimental situations, researchers have information on a number of covariates prior to randomization. This information can be used to balance treatment assignment with respect to these covariates as well as in the analysis of the outcome data. In this paper, we investigate the use of propensity scores in both of these roles. We also introduce a randomization procedure in which the balance of all measured covariates is approximately indexed by the variance of the empirical propensity scores and randomization is restricted to those permutations with the least variable propensity scores. This procedure is compared with recently proposed methods in terms of resulting covariate balance and estimation efficiency. Properties of the estimators resulting from each procedure are compared with estimates which incorporate the propensity score in the analysis stage. Simulation results show that analytical adjustment for the propensity score yields results on par with those obtained through restricted randomization procedures and can be used in conjunction with such procedures to further improve inferential efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1002/sim.6361DOI Listing

Publication Analysis

Top Keywords

propensity scores
16
procedure compared
8
propensity score
8
propensity
6
randomization
5
randomization matching
4
matching propensity
4
scores
4
scores design
4
design analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!