Posttransplantation lymphoproliferative disease: proposed imaging classification.

Radiographics

From the Abdominal Imaging Division, Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1365 Clifton Rd NE, Suite AT-627, Atlanta, GA 30322 (J.C.C., C.C.M., P.A.H., W.E.T., P.K.M.); and Abdominal Imaging Division, Department of Imaging, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia (D.A.A.).

Published: November 2015

Posttransplantation lymphoproliferative disease (PTLD) is the second most common tumor in adult transplant recipients. Most cases of PTLD are attributed to Epstein-Barr virus. Decreased levels of immunosurveillance against this tumor virus as a result of immunosuppressive regimens are thought to account for most cases of PTLD. Histologically, PTLD ranges from relatively benign lymphoid hyperplasia to poorly differentiated lymphoma, and tissue sampling is required to establish the subtype. The frequency of PTLD varies depending on the type of allograft and immunosuppressive regimen. PTLD has a bimodal manifestation, with most cases occurring within the first year after transplantation and a second peak occurring 4-5 years after transplantation. Patients are often asymptomatic or present with nonspecific symptoms, and a mass visible at imaging may be the first clue to the diagnosis. Imaging plays an important role in identifying the presence of disease, guiding tissue sampling, and evaluating response to treatment. The appearance of PTLD at imaging can vary. It may be nodal or extranodal. Extranodal disease may involve the gastrointestinal tract, solid organs, or central nervous system. Solid organ lesions may be solitary or multiple, infiltrate beyond the organ margins, and obstruct organ outflow. Suggestive imaging findings should prompt tissue sampling, because knowledge of the PTLD subtype is imperative for appropriate treatment. Treatment options include reducing immunosuppression, chemotherapy, radiation therapy, and surgical resection of isolated lesions.

Download full-text PDF

Source
http://dx.doi.org/10.1148/rg.347130130DOI Listing

Publication Analysis

Top Keywords

tissue sampling
12
posttransplantation lymphoproliferative
8
lymphoproliferative disease
8
ptld
8
cases ptld
8
imaging
5
disease
4
disease proposed
4
proposed imaging
4
imaging classification
4

Similar Publications

Identifying why complex tissue regeneration is present or absent in specific vertebrate lineages has remained elusive. One also wonders whether the isolated examples where regeneration is observed represent cases of convergent evolution or are instead the product of phylogenetic inertia from a common ancestral program. Testing alternative hypotheses to identify genetic regulation, cell states, and tissue physiology that explain how regenerative healing emerges in some species requires sampling multiple species among which there is variation in regenerative ability across a phylogenetic framework.

View Article and Find Full Text PDF

() utilizes heme as an iron source from the host during infection. Biliverdin beta and delta (BVIXβ and BVIXδ) are generated by HemO, specific to , while biliverdin alpha is generated from the bacterial BphO system and by mammalian heme oxygenases. Here, we have developed and characterized a quantitative LC-MS/MS assay for the separation of three endogenous isomers, BVIXα, BVIXβ, and BVIXδ.

View Article and Find Full Text PDF

FRESH extrusion 3D printing of type-1 collagen hydrogels photocrosslinked using ruthenium.

PLoS One

January 2025

The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America.

The extrusion bioprinting of collagen material has many applications relevant to tissue engineering and regenerative medicine. Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technology is capable of 3D printing collagen material with the specifications and details needed for precise tissue guidance, a crucial requirement for effective tissue repair. While FRESH has shown repeated success and reliability for extrusion printing, the mechanical properties of completed collagen prints can be improved further by post-print crosslinking methodologies.

View Article and Find Full Text PDF

Super-resolution methods provide far better spatial resolution than the optical diffraction limit of about half the wavelength of light (∼200-300 nm). Nevertheless, they have yet to attain widespread use in plants, largely due to plants' challenging optical properties. Expansion microscopy improves effective resolution by isotropically increasing the physical distances between sample structures while preserving relative spatial arrangements and clearing the sample.

View Article and Find Full Text PDF

Background: Peri-implantitis is characterized as a pathological change in the tissues around dental implants. Fourier-transform infrared spectroscopy (FTIR) provides molecular information from optical phenomena observed by the vibration of molecules, which is used in biological studies to characterize changes and serves as a form of diagnosis.

Aims: this case-control study evaluated the peri-implant disease by using FTIR spectroscopy with attenuated total reflectance in the fingerprint region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!