The role of multiple wildlife hosts in the persistence and spread of bovine tuberculosis in New Zealand.

N Z Vet J

a Wildlife Ecology and Management , Landcare Research , PO Box 69040, Lincoln 7640 , New Zealand.

Published: June 2015

Aim: To explore how the inclusion of multi-host dynamics affects the predicted prevalence of bovine tuberculosis (TB) in possums and other host species following the current best practice for control of TB in large difficult and remote areas, to identify which host species are responsible for changes in predicted prevalence, and whether TB can persist in possum-free host communities.

Methods: Multi-host TB models were constructed, comprising three host species with density-dependent population growth, density-dependent disease transmission and susceptible and infected classes. Models were parameterised for two case studies of current concern in New Zealand, namely chronic TB persistence in a possum-deer-pig complex in extensive forest, and in a possum-pig-ferret complex in unforested semi-arid shrub and grasslands. Persistence of TB in the face of best practice possum control was evaluated from model simulations, and the contribution of different hosts to persistence of TB was assessed by removing each host species in turn from the simulations. A sensitivity test explored how different parameter values affected modelled persistence of TB.

Results: The forest multi-host model-predicted amplification of TB prevalence due to the presence of pigs. The presence of pigs and/or deer did not jeopardise the success of best practice possum control in eradicating TB from the system, as pigs and deer are effectively end-hosts for TB. Sensitivity analyses indicated these interpretations were robust to uncertainty in model parameter values. The grassland system model predicted that the multi-host species complex could potentially lead to failure of eradication of TB under possum-only control, due to TB persisting in ferret and pig populations in the absence of possum hosts through reciprocal scavenging, resulting in spillback transmission to possums once their populations had started to recover from control.

Conclusions: With respect to management of TB, for modelled forest habitats, 15 years of effective possum control was predicted to eradicate TB from the possum-deer-pig host community, indicating the current focus on possum-only control is appropriate for such areas. For grassland model systems, TB was predicted to persist in the ferret-pig host complex in the absence of possums, potentially jeopardising the effectiveness of possum-only control programmes. However this outcome depended on the occurrence and rate of pigs acquiring TB from ferrets, which is unknown. Thus some estimation of this transmission parameter is required to enable managers to assess if multi-host disease dynamics are important for their TB control programmes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566902PMC
http://dx.doi.org/10.1080/00480169.2014.968229DOI Listing

Publication Analysis

Top Keywords

host species
16
best practice
12
possum control
12
possum-only control
12
hosts persistence
8
bovine tuberculosis
8
predicted prevalence
8
control
8
practice possum
8
parameter values
8

Similar Publications

Creation and long-term in vitro maintenance of valuable genotype collection is one of the modern approach to conservation of valuable gene pool of woody plants. However, during prolonged cultivation, genetic variability of cells and tissues may accumulate and lead to the loss of valuable characteristics of parental plants. It is therefore important to assess the genetic (including cytogenetic) stability of collection clones.

View Article and Find Full Text PDF

Aprostocetus hagenowii (Ratzburg) is a generalist parasitoid of cockroach (Blattodea) oothecae. Previous studies examining the host range of A. hagenowii have largely focused on cockroaches of economic and medical importance, which represent a minority of species in an order filled with species of diverse morphology, behavior, and ecology.

View Article and Find Full Text PDF

Since the 1990s, the Pacific oyster has faced significant mortality, which has been associated with the detection of the Ostreid Herpesvirus type 1 (OsHV-1). Due to the complex genomic architecture and the presence of multiple genomic isomers, short-read sequencing using Illumina method struggles to accurately assemble tandem and repeat regions and to identify and characterize large structural variations in the OsHV-1 genome. Third-generation sequencing technologies, as long-read real-time nanopore sequencing from Oxford Nanopore Technologies (ONT), offer new possibilities for OsHV-1 whole-genome analysis.

View Article and Find Full Text PDF

Immunological findings of West Caucasian bat virus in an accidental host.

J Virol

January 2025

Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy.

Unlabelled: The genus includes seventeen viral species able to cause rabies, an acute and almost invariably fatal encephalomyelitis of mammals. Rabies virus (RABV), which represents the type species of the genus, is a multi-host pathogen that over the years has undergone multiple events of host-switching, thus occupying several geographical and ecological niches. In contrast, non-RABV lyssaviruses are mainly confined within a single natural host with rare spillover events.

View Article and Find Full Text PDF

Unlabelled: is one of the most virulent bacterial pathogens known and causes the disease tularemia, which can be fatal if untreated. This zoonotic and intracellular pathogen is exposed to diverse environmental and host stress factors that require an appropriate response to survive. However, the stress tolerance mechanisms used by to persist are not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!