Serotonin: a local regulator in the mammary gland epithelium.

Annu Rev Anim Biosci

Department of Molecular and Cellular Physiology, Systems Biology and Physiology Program, University of Cincinnati, Cincinnati, Ohio 45208; email:

Published: February 2014

Serotonin (5-hydroxytryptamine, 5-HT) is a very simple molecule that plays key roles in complex communication mechanisms within the animal body. In the mammary glands, serotonin biosynthesis and secretion are induced in response to dilation of the alveolar spaces. Since its discovery several years ago, mammary 5-HT has been demonstrated to perform two homeostatic functions. First, serotonin regulates lactation and initiates the transition into the earliest phases of involution. Second, serotonin is a local signal that induces parathyroid hormone-related peptide (PTHrP), which allows the mammary gland to drive the mobilization of calcium from the skeleton. These processes use different receptor types, 5-HT7 and 5-HT2, respectively. In this review, we provide synthetic perspectives on the fundamental processes of lactation homeostasis and the adaptation of calcium homeostasis for lactation. We analyze the role of the intrinsic serotonin system in the physiological regulation of the mammary glands. We also consider the importance of the mammary serotonin system in pathologies and therapies associated with lactation and breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-animal-022513-114227DOI Listing

Publication Analysis

Top Keywords

serotonin local
8
mammary gland
8
mammary glands
8
serotonin system
8
serotonin
7
mammary
6
local regulator
4
regulator mammary
4
gland epithelium
4
epithelium serotonin
4

Similar Publications

Genetic and Neurochemical Profiles Underlying Cortical Morphometric Vulnerability to Parkinson's Disease.

Brain Res Bull

January 2025

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:

Background: Increasing evidence has documented cortical involvement at all stages of PD. The local vulnerabilities within certain brain regions in PD have been previously demonstrated, whereas its underlying genetic and neurochemical factors remain unclear. This study aims to investigate the spatial spectrum of cortical atrophy in Parkinson's disease (PD) and link these variances in gray matter properties and curvature respectively to putative molecular pathways and neurotransmitter factors.

View Article and Find Full Text PDF

The serotonergic raphe magnus (RMg) and dorsal raphe (DR) nuclei are crucial pain-regulating structures, which nociceptive activity is shown to be altered in gut pathology, but the underlying neuroplastic changes remain unclear. Considering the importance of 5-HT1A receptors in modulating both pain and raphe neuronal activity, in this study, we aimed to determine whether 5-HT1A-dependent visceral and somatic nociceptive processing within the RMg and DR is modified in postcolitis conditions. In anaesthetised male Wistar rats, healthy control and recovered from TNBS-induced colitis, the microelectrode recordings of RMg and DR neuron responses to noxious colorectal distension (CRD) or tail squeezing (TS) were performed prior and after intravenous administration of 5-HT1A agonist, buspirone.

View Article and Find Full Text PDF

Investigation of serotonin-receptor interactions, stability and signal transduction pathways via molecular dynamics simulations.

Biophys Chem

December 2024

Department of Chemistry and Center for Atomic, Molecular, Optical Sciences and Technologies (CAMOST), Indian Institute of Science, Education and Research (IISER) Tirupati, Yerpedu Mandal, Tirupati 517619, India. Electronic address:

Serotonin-receptor binding plays a key role in several neurological and biological processes, including mood, sleep, hunger, cognition, learning, and memory. In this article, we performed molecular dynamics simulation to examine the key residues that play an essential role in the binding of serotonin to the G-protein-coupled 5-HT receptor (5HTR) via electrostatic interactions. Key residues for electrostatic interactions were identified via bond distance analysis and frustration analysis methods.

View Article and Find Full Text PDF

Introduction: Sciatica is a debilitating condition that often becomes chronic, and for which there are few effective treatment options. Treatments such as the anti-depressant duloxetine have shown promise, but the evidence is inconclusive. We are describing a high quality, definitive trial to investigate the efficacy, safety and cost-effectiveness of duloxetine in chronic sciatica.

View Article and Find Full Text PDF

Paroxetine promotes longevity via ser-7-dop-4-IIS axis in Caenorhabditis elegans.

Geroscience

December 2024

Center for Aging Biomedicine, College of Life Sciences, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Normal University, 36 Lushan Road, Changsha, 410081, Hunan, China.

Paroxetine, a selective serotonin reuptake inhibitor, is widely used in the clinical treatment of depression. While several antidepressants show promise as geroprotectors, the role of paroxetine in aging remains unclear. In this study, we evaluated the lifespan extension effect of paroxetine in Caenorhabditis elegans (C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!