This article reports on the synthesis and crystallographic and magnetic structure of barium-doped BiFeO3 compounds with approximate composition Bi(1-x)Ba(x)FeO(3-x/2), as well as those of the fluorinated compounds Bi(1-x)Ba(x)FeO(3-x)F(x) (both with x = 0.2, 0.3), prepared by low-temperature fluorination of the oxide precursors using polyvinylidenedifluoride. Whereas the oxide compounds were obtained as cubic (x = 0.2) and slightly tetragonal (x = 0.3, c/a ≈ 1.003) distorted perovskite compounds, a large tetragonal polar distortion was observed for the oxyfluoride compounds (c/a ≈ 1.08 for x = 0.2 and ∼1.05 for x = 0.3), being isostructural to tetragonal PbTiO3. Although described differently in previous reports on Ba-doped BiFeO3, the observed remanent magnetization is found to agree well with the amount of BaFe12O19 only detectable by neutron diffraction and the well-known magnetic properties of BaFe12O19. The oxyfluoride compounds show G-type antiferromagnetic ordering with magnetic moments lying in the a/b plane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic502183t | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!