Eastern newts (Notophthalmus viridescens) upregulate the metabolic capacity of skeletal muscle in winter to compensate for thermodynamic effects on metabolism. However, whether this compensation facilitates locomotor performance at low temperature is unknown. Therefore, our aim was to determine if thermal acclimation of metabolic enzymes in muscle benefits locomotion. Eastern newts from southern Ohio were acclimated to cold (5°C, 10:14 L:D) or warm (25°C, 14:10 L:D) conditions for 12 weeks. Following acclimation, we measured the locomotor performance (burst speed and time until exhaustion) and the activities of metabolic enzymes in skeletal muscle at 5-30°C. Creatine kinase (CK) activity in skeletal muscle was higher in cold compared to warm-acclimated newts, and cold-acclimated newts had a higher burst speed at low temperature compared to warm-acclimated newts. At low temperature, time until exhaustion was higher in cold compared to warm-acclimated newts, but the activities of citrate synthase (CS) and cytochrome c oxidase (CCO) in muscle were lower in cold compared to warm-acclimated newts. Together, these results demonstrate that eastern newts compensate for the effects of low temperature on locomotor performance. Whereas thermal compensation of CK activity is correlated with burst locomotion at low temperature, aerobic enzymes in skeletal muscle (CS and CCO) are not linked to compensation of sustained locomotion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jez.1895 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!