The interaction of Bovine Serum Albumin (BSA) with limonene has been studied by UV-visible spectroscopy, fluorescence spectroscopy and molecular docking, and its effects on protein conformation, topology and stability were determined by Circular Dichroism (CD), Dynamic Light Scattering (DLS) and Differential Scanning Calorimetry (DSC). A gradual decrease in Stern-Volmer quenching constants with the increase in temperature showed the static mode of fluorescence quenching. The obtained binding constant (Kb) was ∼10(4) M(-1). The temperature dependent Kb, Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) changes were calculated, which revealed that the reaction is spontaneous and exothermic. The UV-visible spectra showed a change in the peaks within the aromatic region indicating hydrophobic interactions with Trp, Tyr and Phe in the protein. Moreover, limonene induced an increase in α-helical contents probably on the cost of random coils or/and β-sheets of BSA, as observed from the far-UV CD spectra. The topology of BSA in the presence of limonene was slightly altered, as obtained from DLS results. The stability was also enhanced as revealed through thermal denaturation study by DSC and CD. Molecular docking study depicted that limonene fits into the hydrophobic pocket close to Sudlow site I in domain IIA of BSA. The present study will be helpful in understanding the binding mechanism of limonene and associated stability and conformational changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4mb00548a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!