Thrombosis in the arterial or venous vascular systems is preceded by a complex interplay between environmental and genetic factors, and it is the underlying cause of several common complex diseases. The genomewide association approach has proved successful in identifying loci associated with cardiovascular disease and related risk factors. However, much work remains to identifyning the culprit genes and causal variants as well as the mechanisms whereby they influence disease development and progression. In-depth studies of previously identified disease-associated loci are expected to improve our understanding of the pathophysiology of cardiovascular disease and identify novel targets for treatment. In the field of atherothrombosis and thrombophilia are significant results from association studies focused on the area of coronary artery disease, ischemic stroke, venous thromboembolism.Key words: atherosclerosis - atherothrombosis - coronary artery disease - genomewide association study (GWAS) - myocardial infarction - single nucleotide polymorphism (SNP) - thrombophilia - venous thromboembolism.
Download full-text PDF |
Source |
---|
BMC Med
January 2025
Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China.
Background: Obstructive sleep apnea (OSA) is linked to brain alterations, but the specific regions affected and the causal associations between these changes remain unclear.
Methods: We studied 20 pairs of age-, sex-, BMI-, and education- matched OSA patients and healthy controls using multimodal magnetic resonance imaging (MRI) from August 2019 to February 2020. Additionally, large-scale Mendelian randomization analyses were performed using genome-wide association study (GWAS) data on OSA and 3935 brain imaging-derived phenotypes (IDPs), assessed in up to 33,224 individuals between December 2023 and March 2024, to explore potential genetic causality between OSA and alterations in whole brain structure and function.
Eur Spine J
January 2025
Department of Orthopedics, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, Guangdong, China.
Objectives: Sleep disorders are considered a risk factor for aging and skeletal degeneration, but their impact on intervertebral disc degeneration (IDD) remains unclear. The aim of this study was to assess associations between sleep characteristics and IDD, and to identify potential causal relationships.
Methods: Exposure factors included six unhealthy sleep characteristics: insomnia, short sleep duration (< 7 h), long sleep duration (≥ 9 h), evening chronotype, daytime sleepiness, and snoring.
World J Microbiol Biotechnol
January 2025
Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China.
Catabolic plasmids are critical factors in the degradation of recalcitrant xenobiotics, such as dioxins. Understanding the persistence and evolution of native catabolic plasmids is pivotal for controlling their function in microbial remediation. Here, we track the fitness and evolution of Rhodococcus sp.
View Article and Find Full Text PDFJ Stroke Cerebrovasc Dis
January 2025
Shandong First Medical University, Jinan 250117, Shandong, China; Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng 252000, Shangdong, China. Electronic address:
Background: Previous observational studies have suggested a potential association between heart rate variability (HRV) and cerebrovascular disease. However, a causal relationship between the two has not yet been established.
Aims: The objective of this study was to determine the causal relationship between heart rate variability (HRV) and stroke through a two-sample Mendelian randomization analysis.
Acta Trop
January 2025
Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk, 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk, 630090, Russia. Electronic address:
Cell models emulating an in vitro parasitic infection can greatly improve our understanding of helminthiases. Nonetheless, it remains challenging to select an appropriate in vitro model to study molecular pathogenesis of infections by trematodes having a complex life cycle. Therefore, adequate models are in high demand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!