A maltotriose-producing α-amylase, AmyA, from a newly isolated bacterial strain Microbulbifer thermotolerans DAU221 was purified and characterized in the heterologous host, Escherichia coli, using the pCold I vector. The amyA gene encoded a 761-residue protein composed of a 33 amino acid secretion signal peptide. The purified α-amylase with a molecular mass of 80 kDa, approximately, shared a sequence motif characteristic of the glycoside hydrolase family 13. The enzyme was optimally active, at 50 °C in sodium phosphate buffer (pH 6.0), by the traditional one factor-at-a-time method. But the optimal conditions of time, temperature, and pH for production of maltotriose from soluble starch were 1.76 h, 44.95 °C, and pH 6.35 by response surface methodology, respectively. Maltotriose, as the major enzyme reaction product, was analyzed by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). The enzyme was found to be inhibited by the addition of 10 mM Cu(2+), Fe(3+), Hg(2+), Zn(2+), and EDTA, but exhibited extreme stability toward hexane. The K m and V max values for the hydrolysis of soluble starch were 1.08 mg/mL and 1.736 mmol maltotriose/mg protein/min, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-014-6186-5 | DOI Listing |
Plant Foods Hum Nutr
January 2025
Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru.
This review aimed to explore the impact of extrusion on Andean grains, such as quinoa, kañiwa, and kiwicha, highlighting their macromolecular transformations, technological innovations, and contributions to food security. These grains, which are rich in starch, high-quality proteins, and antioxidant compounds, are versatile raw materials for extrusion, a continuous and efficient process that combines high temperatures and pressures to transform structural and chemical components. Extrusion improves the digestibility of proteins and starches, encourages the formation of amylose-lipid complexes, and increases the solubility of dietary fiber.
View Article and Find Full Text PDFCell Physiol Biochem
January 2025
Carrera de Agroindustria, Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, ESPAM-MFL, Calceta. 130250, Ecuador.
Background/aims: This study investigates how pH levels affect the characteristics of biopolymer films manufactured from cassava peel starch. Cassava peel starch's abundance and biodegradability make it a promising candidate for sustainable packaging. The study seeks to improve film qualities such as thickness, density, moisture content, solubility, and optical properties by altering pH levels.
View Article and Find Full Text PDFAAPS J
January 2025
Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, 4000, Liège, Belgium.
In addition to the known therapeutic indications for cannabidiol, its administration by inhalation appears to be of great interest. Indeed, there is evidence of cannabidiol's efficacy in several physiological pathways, suggesting its potential for a wide range of applications for both local and systemic pulmonary administration like cancers. Significant advances in pulmonary drug delivery have led to innovative strategies to address the challenges of increasing the respirable fraction of drugs and standardizing inhalable products.
View Article and Find Full Text PDFFood Chem
January 2025
School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
This study evaluated the effects of malic acid vacuum microwave preconditioning (MVMP) on lotus root (LR) by examining its moisture content, dielectric properties, microstructure, and starch characteristics, including modifications in starch structure and composition. Dielectric properties and LF-NMR indicated that the dielectric constant (ε') was closely associated to moisture content and state, while changes in water migration depended on microwave power and the dielectric loss factor (ε″). Increased microwave power and malic acid concentration resulted in microstructural damage (indentation and breakage of starch granules) and starch hydrolysis into smaller particles.
View Article and Find Full Text PDFPlant Mol Biol
January 2025
Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.
Nitrogen (N) is a major plant nutrient and its deficiency can arrest plant growth. However, how low-N stress impair plant growth and its related tolerance mechanisms in peanut seedlings has not yet been explored. To counteract this issue, a hydroponic study was conducted to explore low N stress (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!