Optimization of noise in non-integrated instrumentation amplifier for the amplification of very low electrophysiological [corrected] signals. Case of electro cardio graphic signals (ECG).

J Med Syst

Automation and Control Laboratory (ACL), Department of Coordination and Valorization of Research (CVR), National Advanced School of Engineering, BP: 8390, Yaoundé, Cameroon,

Published: December 2014

AI Article Synopsis

Article Abstract

In this paper we present an instrumentation amplifier with discrete elements and optimized noise for the amplification of very low signals. In amplifying signals of very weak amplitude, the noise can completely absorb these signals if the used amplifier does not present the optimal guarantee to minimize the noise. Based on related research and re-viewing of recent patents Journal of Medical Systems, 30:205-209, 2006, we suggest an approach of noise reduction in amplification much more thoroughly than re-viewing of recent patents and we deduce from it the general criteria necessary and essential to achieve this optimization. The comparison of these criteria with the provisions adopted in practice leads to the inadequacy of conventional amplifiers for effective noise reduction. The amplifier we propose is an instrumentation amplifier with active negative feedback and optimized noise for the amplification of signals with very low amplitude. The application of this method in the case of electro cardio graphic signals (ECG) provides simulation results fully in line with forecasts.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10916-014-0152-8DOI Listing

Publication Analysis

Top Keywords

instrumentation amplifier
12
amplification low
8
case electro
8
electro cardio
8
cardio graphic
8
graphic signals
8
signals ecg
8
optimized noise
8
noise amplification
8
re-viewing patents
8

Similar Publications

Marginal liver grafts, such as those from cardiac death donors and donors with steatotic organs, are highly vulnerable to ischemia-reperfusion injury. In addition, ex situ graft alteration, either by reduction or splitting, will prolong the static cold storage time and amplify the ischemia-reperfusion injury. Hypothermic oxygenated machine perfusion has the potential to end the oxygen deprivation during preservation and accordingly improve outcomes in some marginal grafts that have been traditionally discarded.

View Article and Find Full Text PDF

Self-powered dual-photoelectrode photoelectrochemical aptasensor amplified by hemin/G-quadruplex-based DNAzyme.

Mikrochim Acta

January 2025

Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong, 266035, P.R. China.

A self-powered dual-electrode aptasensor was developed for the detection of tumor marker carcinoembryonic antigen (CEA). The composite BiVO/ZnInS, which is capable of forming a Z-scheme heterojunction, was chosen as the photoanode, and the AuNP/CuBiO complex was chosen as the photocathode in photoelectrochemical (PEC) detection. The experiments showed that the constructed self-powered dual-electrode system had a good photoelectric response to white light, and the photocurrent signal of the photocathode was significantly enhanced under the influence of the photoanode.

View Article and Find Full Text PDF

The use of hydrogen as fuel presents many safety challenges due to its flammability and explosive nature, combined with its lack of color, taste, and odor. The purpose of this paper is to present an electrochemical sensor that can achieve rapid and accurate detection of hydrogen leakage. This paper presents both the component elements of the sensor, like sensing material, sensing element, and signal conditioning, as well as the electronic protection and signaling module of the critical concentrations of H.

View Article and Find Full Text PDF

An FPGA-Based SiNW-FET Biosensing System for Real-Time Viral Detection: Hardware Amplification and 1D CNN for Adaptive Noise Reduction.

Sensors (Basel)

January 2025

Department of Computer Science, Faculty of Sciences and Humanities Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia.

Impedance-based biosensing has emerged as a critical technology for high-sensitivity biomolecular detection, yet traditional approaches often rely on bulky, costly impedance analyzers, limiting their portability and usability in point-of-care applications. Addressing these limitations, this paper proposes an advanced biosensing system integrating a Silicon Nanowire Field-Effect Transistor (SiNW-FET) biosensor with a high-gain amplification circuit and a 1D Convolutional Neural Network (CNN) implemented on FPGA hardware. This attempt combines SiNW-FET biosensing technology with FPGA-implemented deep learning noise reduction, creating a compact system capable of real-time viral detection with minimal computational latency.

View Article and Find Full Text PDF

Template-assembly activation of primer exchange reaction for on-site and sensitive detection of copper ions in blood.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China. Electronic address:

The sensitive and accurate detection of copper ions is crucial for public health, medical research, and environmental monitoring. In this study, we developed a sensor based on template-assembly activation of the primer exchange reaction (PER) for the on-site detection of copper ions in blood. Copper ions triggered the assembly of two template fragments into a hairpin structure via a click-chemistry reaction, activating the PER.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!