Isolation of type A influenza viruses from Red-necked Grebes (Podiceps grisegena).

J Wildl Dis

1 Southeastern Cooperative Wildlife Disease Study, Department of Population Health, 589 D. W. Brooks Drive, Wildlife Health Building, College of Veterinary Medicine, The University of Georgia, Athens, Georgia 30602-4393, USA.

Published: January 2015

AI Article Synopsis

  • - Six low pathogenic influenza viruses were sequenced from Red-necked Grebes at Agassiz National Wildlife Refuge.
  • - These viruses were found to be closely related to viruses from North American ducks.
  • - The similarity in genetic makeup suggests possible spillover events between ducks and grebes, potentially influenced by the grebes eating duck feathers.

Article Abstract

Six type-A low pathogenic influenza viruses from 14 Red-necked Grebes (Podiceps grisegena) from Agassiz National Wildlife Refuge were sequenced. The grebe viruses were closely related to North American duck viruses. The genetic and temporal subtype consistency between the duck and grebe isolates suggest spillover events, potentially enhanced by feather eating.

Download full-text PDF

Source
http://dx.doi.org/10.7589/2014-05-126DOI Listing

Publication Analysis

Top Keywords

influenza viruses
8
viruses red-necked
8
red-necked grebes
8
grebes podiceps
8
podiceps grisegena
8
isolation type
4
type influenza
4
viruses
4
grisegena type-a
4
type-a low
4

Similar Publications

Major change in swine influenza virus diversity in France owing to emergence and widespread dissemination of a newly introduced H1N2 1C genotype in 2020.

Virus Evol

December 2024

ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, National Reference Laboratory for Swine Influenza, BP53, Ploufragan 22440, France.

Swine influenza A viruses (swIAVs) are a major cause of respiratory disease in pigs worldwide, presenting significant economic and health risks. These viruses can reassort, creating new strains with varying pathogenicity and cross-species transmissibility. This study aimed to monitor the genetic and antigenic evolution of swIAV in France from 2019 to 2022.

View Article and Find Full Text PDF

SARS-CoV-2 CoCoPUTs: analyzing GISAID and NCBI data to obtain codon statistics, mutations, and free energy over a multiyear period.

Virus Evol

January 2025

Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA.

A consistent area of interest since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been the sequence composition of the virus and how it has changed over time. Many resources have been developed for the storage and analysis of SARS-CoV-2 data, such as GISAID (Global Initiative on Sharing All Influenza Data), NCBI, Nextstrain, and outbreak.info.

View Article and Find Full Text PDF

A risk assessment framework was developed to evaluate the zoonotic potential of avian influenza (AI), focusing on virus mutations linked to phenotypic traits related to mammalian adaptation identified in the literature. Virus sequences were screened for the presence of these mutations and their geographical, temporal and subtype-specific trends. Spillover events to mammals (including humans) and human seroprevalence studies were also reviewed.

View Article and Find Full Text PDF

When investigating and controlling outbreaks caused by zoonotic avian influenza viruses (AIV), a One Health approach is key. However, knowledge-sharing on AIV-specific One Health strategies, tools and action plans remains limited across the EU/EEA. It is crucial to establish responsibilities, capacity requirements, and collaboration mechanisms during 'peace time' to enable timely and effective outbreak investigations and management.

View Article and Find Full Text PDF

Harnessing viral internal proteins to combat flu and beyond.

Virology

January 2025

School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom. Electronic address:

This mini-review examines the strategy of combining viral protein sequence conservation with drug-binding potential to identify novel antiviral targets, focusing on internal proteins of influenza A and other RNA viruses. The importance of combating viral genetic variability and reducing the likelihood of resistance development is emphasised in the context of sequence redundancy in viral datasets. It covers recent structural and functional updates, as well as drug targeting efforts for three internal influenza A viral proteins: Basic Polymerase 2, Nuclear Export Protein, and Nucleoprotein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!