A new model for studying localised axonal stretch injury is presented, using a microfluidic device to selectively culture axons on a thin, flexible poly (dimethylsiloxane) membrane which can be deflected upward to stretch the axons. A very mild (0.5% strain) or mild stretch injury (5% strain) was applied to primary cortical neurons after 7 days growth in vitro. The extent of distal degeneration was quantified using the degenerative index (DI, the ratio of fragmented axon area to total axon area) of axons fixed at 24 h and 72 h post injury (PI), and immunolabelled for the axon specific, microtubule associated protein-tau. At 24 h PI following very mild injuries (0.5%), the majority of the axons remained intact and healthy with no significant difference in DI when compared to the control, but at 72 h PI, the DI increased significantly (DI = 0.11 ± 0.03). Remarkably, dendritic beading in the somal compartment was observed at 24 h PI, indicative of dying back degeneration. When the injury level was increased (5% stretch, mild injury), microtubule fragmentation along the injured axons was observed, with a significant increase in DI at 24 h PI (DI = 0.17 ± 0.02) and 72 h PI (DI = 0.18 ± 0.01), relative to uninjured axons. The responses observed for both mild and very mild injuries are similar to those observed in the in vivo models of traumatic brain injury, suggesting that this model can be used to study neuronal trauma and will provide new insights into the cellular and molecular alterations characterizing the neuronal response to discrete axonal injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189213 | PMC |
http://dx.doi.org/10.1063/1.4891098 | DOI Listing |
Wearable Technol
December 2024
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
This work studies upper-limb impairment resulting from stroke or traumatic brain injury and presents a simple technological solution for a subset of patients: a soft, active stretching aid for at-home use. To better understand the issues associated with existing associated rehabilitation devices, customer discovery conversations were conducted with 153 people in the healthcare ecosystem (60 patients, 30 caregivers, and 63 medical providers). These patients fell into two populations: spastic (stiff, clenched hands) and flaccid (limp hands).
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Guizhou Medical University, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou, People's Republic of China.
Background: Wound repair methods are commonly used in clinical practice, such as skin graft and flap repair, which can cause secondary injuries, and high costs. Many methods for skin stretching and repair have been reported domestically and internationally. However, their clinical use is limited owing to lack of equipment, complexity, and high costs.
View Article and Find Full Text PDFPurpose: Fibrosis of muscle spindles (sensory organs) in back muscles induced by intervertebral disc (IVD) degeneration could limit transmission of muscle stretch to the sensory receptor and explain the proprioceptive deficits common in back pain. Exercise reduces back muscles fibrosis. This study investigated whether targeted muscle activation via neurostimulation reverses or resolves muscle spindle fibrosis in a model of IVD injury.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Orthopaedics, All India Institute of Medical Sciences, New Delhi, India.
Slimmer's paralysis is a peripheral mononeuropathy of the common peroneal (fibular) nerve (CPN/CFN), typically associated with rapid weight loss resulting in loss of subcutaneous fat pad and subsequent neural compression at the fibular head. Here, we describe a young man with a 1-year history of right-sided foot drop, which developed following a rapid intentional weight loss of 11 kg over a period of 15 days. This weight loss was preceded by rapid weight gain over 2 days owing to binge eating.
View Article and Find Full Text PDFJ Strength Cond Res
December 2024
School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom.
Kember, LS, Riehm, CD, Schille, A, Slaton, JA, Myer, GD, and Lloyd, RS. Residual biomechanical deficits identified with the tuck jump assessment in female athletes 9 months after ACLR surgery. J Strength Cond Res 38(12): 2065-2073, 2024-Addressing biomechanical deficits in female athletes after anterior cruciate ligament reconstruction (ACLR) is crucial for safe return-to-play.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!