Purpose: This article reviews the mechanism of action of trastuzumab emtansine (T-DM1), existing clinical data relating to its use for human growth factor receptor 2 (HER2)-positive breast cancer, potential pathways of resistance, and ongoing studies evaluating this novel agent.
Background: The development of HER2-targeted therapies has dramatically improved clinical outcomes for patients with any stage of HER2-positive breast cancer. Although the positive effect of these treatments cannot be overstated, treatment resistance develops in the vast majority of those diagnosed with stage IV HER2-positive breast cancer. Moreover, HER2-directed therapies are most effective when combined with cytotoxic chemotherapy. The need for chemotherapy leads to significant adverse effects and a clear decrease in quality of life for those dealing with a chronic incurable disease. T-DM1 is a recently developed, novel antibody-drug conjugate in which highly potent maytanisinoid chemotherapy is stably linked to the HER2-targeted monoclonal antibody, trastuzumab.
Results: Preclinical and phase 1-3 clinical data support the significant antitumor activity of T-DM1. Importantly, several randomized studies also now demonstrate its clear superiority in terms of tolerability compared with standard chemotherapy-containing regimens. Its role in the treatment of trastuzumab-resistant metastatic breast cancer has now been established on the basis of the results of two phase 3 randomized studies, EMILIA (An Open-label Study of Trastuzumab Emtansine (T-DM1) vs Capecitabine + Lapatinib in Patients With HER2-positive Locally Advanced or Metastatic Breast Cancer) and TH3RESA (A Study of Trastuzumab Emtansine in Comparison With Treatment of Physician's Choice in Patients With HER2-positive Breast Cancer Who Have Received at Least Two Prior Regimens of HER2-directed Therapy). The most common toxicities seen with T-DM1 are thrombocytopenia and an elevation in liver transaminases. Significant cardiac toxicity has not been demonstrated. Both in vitro cell line-based studies as well as exploratory analyses of archived tumor samples from the clinical trials are seeking to understand potential mechanisms of resistance to T-DM1. Ongoing studies are also evaluating the use of T-DM1 in the first-line metastatic, neoadjuvant, and adjuvant settings, as well as in combination with other targeted therapies.
Conclusion: T-DM1 represents the first successfully developed antibody drug conjugate for the treatment of HER2-positive advanced breast cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207068 | PMC |
http://dx.doi.org/10.2147/PGPM.S47524 | DOI Listing |
IUBMB Life
January 2025
Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China.
Triple-negative breast cancer (TNBC) remains a significant global health challenge, emphasizing the need for precise identification of patients with specific therapeutic targets and those at high risk of metastasis. This study aimed to identify novel therapeutic targets for personalized treatment of TNBC patients by elucidating their roles in cell cycle regulation. Using weighted gene co-expression network analysis (WGCNA), we identified 83 hub genes by integrating gene expression profiles with clinical pathological grades.
View Article and Find Full Text PDFCancer
February 2025
General Medicine Service, VA Puget Sound Health Care System, Seattle, Washington, USA.
Background: Breast cancer screening (BCS) inequities are evident at national and local levels, and many health systems want to address these inequities, but may lack data about contributing factors. The objective of this study was to inform health system interventions through an exploratory analysis of potential multilevel contributors to BCS inequities using health system data.
Methods: The authors conducted a cross-sectional analysis within a large academic health system including 19,774 individuals who identified as Black (n = 1445) or White (n = 18,329) race and were eligible for BCS.
Cancer
February 2025
Departmental Unit of Molecular and Genomic Diagnostics, Genomics Core Facility, G-STeP, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
Background: To date, 11 DNA polymerase epsilon (POLE) pathogenic variants have been declared "hotspot" mutations. Patients with endometrial cancer (EC) characterized by POLE hotspot mutations (POLEmut) have exceptional survival outcomes. Whereas international guidelines encourage deescalation of adjuvant treatment in early-stage POLEmut EC, data regarding safety in POLEmut patients with unfavorable characteristics are still under investigation.
View Article and Find Full Text PDFStat Med
February 2025
Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas, USA.
Multi-gene panel testing allows efficient detection of pathogenic variants in cancer susceptibility genes including moderate-risk genes such as ATM and PALB2. A growing number of studies examine the risk of breast cancer (BC) conferred by pathogenic variants of these genes. A meta-analysis combining the reported risk estimates can provide an overall estimate of age-specific risk of developing BC, that is, penetrance for a gene.
View Article and Find Full Text PDFBMC Rheumatol
January 2025
Department of Rheumatology, Overton Brooks VA Medical Center, Shreveport, LA, USA.
Background: Dermatomyositis is a chronic inflammatory condition affecting muscles and skin, often associated with an increased risk of cancer. Specific autoantibodies, including anti-TIF1 (Transcription Intermediary Factor 1), have been linked to this risk. We present a case of dermatomyositis in a male patient positive for anti-TIF1 antibodies, subsequently diagnosed with squamous cell carcinoma of the tonsil, a novel association not previously documented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!