Whole-genome analysis of herbicide-tolerant mutant rice generated by Agrobacterium-mediated gene targeting.

Plant Cell Physiol

Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama, 236-0027 Japan

Published: January 2015

Gene targeting (GT) is a technique used to modify endogenous genes in target genomes precisely via homologous recombination (HR). Although GT plants are produced using genetic transformation techniques, if the difference between the endogenous and the modified gene is limited to point mutations, GT crops can be considered equivalent to non-genetically modified mutant crops generated by conventional mutagenesis techniques. However, it is difficult to guarantee the non-incorporation of DNA fragments from Agrobacterium in GT plants created by Agrobacterium-mediated GT despite screening with conventional Southern blot and/or PCR techniques. Here, we report a comprehensive analysis of herbicide-tolerant rice plants generated by inducing point mutations in the rice ALS gene via Agrobacterium-mediated GT. We performed genome comparative genomic hybridization (CGH) array analysis and whole-genome sequencing to evaluate the molecular composition of GT rice plants. Thus far, no integration of Agrobacterium-derived DNA fragments has been detected in GT rice plants. However, >1,000 single nucleotide polymorphisms (SNPs) and insertion/deletion (InDels) were found in GT plants. Among these mutations, 20-100 variants might have some effect on expression levels and/or protein function. Information about additive mutations should be useful in clearing out unwanted mutations by backcrossing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4301741PMC
http://dx.doi.org/10.1093/pcp/pcu153DOI Listing

Publication Analysis

Top Keywords

rice plants
12
analysis herbicide-tolerant
8
gene targeting
8
point mutations
8
dna fragments
8
plants
6
rice
5
mutations
5
whole-genome analysis
4
herbicide-tolerant mutant
4

Similar Publications

The use of nitrogen-fixing bacteria in agriculture is increasingly recognized as a sustainable method to boost crop yields, reduce chemical fertilizer use, and improve soil health. However, the microbial mechanisms by which inoculation with nitrogen-fixing bacteria enhance rice production remain unclear. In this study, rice seedlings were inoculated with the nitrogen-fixing bacterium R3 (Herbaspirillum) at the rhizosphere during the seedling stage in a pot experiment using paddy soil.

View Article and Find Full Text PDF

When agriculture meets biotechnology: a route for future agricultural innovation.

Adv Biotechnol (Singap)

November 2024

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, 518107, China.

View Article and Find Full Text PDF

Winter forage crops influence soil properties through establishing different arbuscular mycorrhizal fungi communities in paddy field.

Adv Biotechnol (Singap)

September 2024

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.

Winter planting is promising for improving the utilization rate of fallow paddy fields in southern China by establishing arbuscular mycorrhizal fungi (AMF) communities. However, the effects of different winter forage crops on AMF community construction remain unknown. The AMF community establishment of different winter planting forage crops were conducted in oat, rye, Chinese milk vetch, and ryegrass, with winter fallow as a control.

View Article and Find Full Text PDF

Common agricultural weeds among alien invasive plants in China: Species lists and their practical managing strategies.

Heliyon

January 2025

Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College (Research Institute of Rice Industrial Engineering Technology) of Yangzhou University, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.

Plant invasion is a big challenge to weed management of agricultural lands. In order to reveal the list of common weed species among alien invasive plants, and reveal practical management strategies, we extracted the species lists of common alien agricultural weeds (CAAWs) of various arable lands and plantations, by comparing the lists of alien invasive plant species and common weed species published in China. Totally 88 species from 18 families were recognized as CAAWs, among which 43.

View Article and Find Full Text PDF

GEFormer: a Genomic Prediction Method of Genotype-Environment Interaction in Maize by Integrating Gating Mechanism MLP and Linear Attention Mechanism.

Mol Plant

January 2025

National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China; College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China. Electronic address:

The integration of genotypic and environmental data can enhance the prediction accuracy of field traits of crops. The existing genomic prediction methods fail to consider the environmental factors and do not consider the real growing environment of crops, resulting in low genomic prediction accuracy. In this work, we propose a genotype-environment interaction genomic prediction method in maize, called GEFormer, based on integrating the gating mechanism MLP and linear attention mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!