A two-enzyme immobilization approach using carbon nanotubes/silica as support.

Biotechnol Prog

Beijing Key Lab of Bioprocess, Dept. of Biochemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.

Published: December 2015

Multiple enzyme mixtures are attractive for the production of many compounds at an industrial level. We report a practical and novel approach for coimmobilization of two enzymes. The system consists of a silica microsphere core coated with two layers of individually immobilized enzymes. The model enzymes α-amylase (AA) and glucoamylase (GluA) were individually immobilized on carbon nanotubes (CNTs). A CNT-GluA layer was formed by adsorbing CNT-GluA onto silica microsphere. A sol-gel layer with entrapped CNT-AA was then formed outside the CNT-GluA/silica microsphere conjugate. The coimmobilized α-amylase and glucoamylase exhibited 95.1% of the activity of the mixture of free α-amylase and glucoamylase. The consecutive use exhibited a good stability of the coimmobilized enzymes. The developed approach demonstrates advantages, including controlling the ratio of coimmobilized enzymes in an easy way, facilitating diffusion of small molecules in and out of the matrix, and preventing the leaching of enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.2010DOI Listing

Publication Analysis

Top Keywords

α-amylase glucoamylase
12
silica microsphere
8
individually immobilized
8
coimmobilized enzymes
8
enzymes
6
two-enzyme immobilization
4
immobilization approach
4
approach carbon
4
carbon nanotubes/silica
4
nanotubes/silica support
4

Similar Publications

Disaccharidase Enzyme Deficiency in Adult Patients with Gas and Bloating.

Clin Transl Gastroenterol

January 2025

Division of Gastroenterology and Hepatology, Department of Internal Medicine, Wellstar Medical College of Georgia, Augusta University, Augusta, Georgia.

Introduction: Disaccharidases produced by the small intestinal brush border facilitate digestion of dietary carbohydrates. If deficient, they can cause carbohydrate malabsorption resulting in several abdominal symptoms. Our aim was to examine the prevalence of disaccharidase deficiency and correlate this with abdominal symptoms in adult patients with chronic abdominal symptoms.

View Article and Find Full Text PDF

Structures and properties of α-amylase and glucoamylase immobilized by ZIF-8 via one-pot preparation.

Enzyme Microb Technol

December 2024

Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.

The immobilization of α-amylase and glucoamylase using a metal-organic framework (enzyme@ZIF-8) was prepared in situ through a one-pot method. The morphology, crystal structure, and molecular characteristics of the free enzyme and enzyme@ZIF-8 were characterized. The enzyme@ZIF-8 exhibited the rhombic dodecahedron morphology, with a decrease in particle size.

View Article and Find Full Text PDF

Targeting alpha-glucosidase (maltase-glucoamylase [MGAM] and sucrase-isomaltase [SI]) under diabetes conditions is important to overcome hyperglycemia. Moreover, it is necessary to mitigate hyperglycemia-mediated oxidative stress to evade the progression of diabetes-associated secondary complications. Hence, in the present study, under-explored Nyctanthes arbor-tristis flowers (NAFs) were studied for inhibition of alpha-glucosidase activities.

View Article and Find Full Text PDF

Expression of Recombinant Human α-Glucosidase in HEK293 Cells.

J Agric Food Chem

January 2025

Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.

In mammals, intestinal α-glucosidase exists as a maltase-glucoamylase complex (MGAM) and a sucrase-isomaltase complex (SI). In this study, we transiently expressed human MGAM and SI in human embryonic kidney 293 (HEK293) cells. At pH 6.

View Article and Find Full Text PDF

Identification of the saccharifying microbiota based on the absolute quantitative analysis in the batch solid-state fermentation system.

Int J Food Microbiol

December 2024

Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

The fermentation process of Chinese baijiu, a distinctive example of batch solid-state fermentation (BSSF), involves the recurrent use of the same raw material to optimize starch utilization. However, it is unclear which microorganisms are able to metabolize low concentration starch effectively. In this study, we successfully identified the key saccharifying microbiota that degraded low-concentration starch in the BSSF system by absolute quantification techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!