Quantum discord as a resource for quantum cryptography.

Sci Rep

Department of Computer Science, University of York, York YO10 5GH, United Kingdom.

Published: November 2014

Quantum discord is the minimal bipartite resource which is needed for a secure quantum key distribution, being a cryptographic primitive equivalent to non-orthogonality. Its role becomes crucial in device-dependent quantum cryptography, where the presence of preparation and detection noise (inaccessible to all parties) may be so strong to prevent the distribution and distillation of entanglement. The necessity of entanglement is re-affirmed in the stronger scenario of device-independent quantum cryptography, where all sources of noise are ascribed to the eavesdropper.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4223666PMC
http://dx.doi.org/10.1038/srep06956DOI Listing

Publication Analysis

Top Keywords

quantum cryptography
12
quantum discord
8
quantum
6
discord resource
4
resource quantum
4
cryptography quantum
4
discord minimal
4
minimal bipartite
4
bipartite resource
4
resource needed
4

Similar Publications

In the era of the Internet of Things (IoT), the transmission of medical reports in the form of scan images for collaborative diagnosis is vital for any telemedicine network. In this context, ensuring secure transmission and communication is necessary to protect medical data to maintain privacy. To address such privacy concerns and secure medical images against cyberattacks, this research presents a robust hybrid encryption framework that integrates quantum, and classical cryptographic methods.

View Article and Find Full Text PDF

Introduction: The rapid escalation of cyber threats necessitates innovative strategies to enhance cybersecurity and privacy measures. Artificial Intelligence (AI) has emerged as a promising tool poised to enhance the effectiveness of cybersecurity strategies by offering advanced capabilities for intrusion detection, malware classification, and privacy preservation. However, this work addresses the significant lack of a comprehensive synthesis of AI's use in cybersecurity and privacy across the vast literature, aiming to identify existing gaps and guide further progress.

View Article and Find Full Text PDF

A Dual-Path Computational Ghost Imaging Method Based on Convolutional Neural Networks.

Sensors (Basel)

December 2024

College of Computer Science and Technology, Changchun University, Changchun 130022, China.

Ghost imaging is a technique for indirectly reconstructing images by utilizing the second-order or higher-order correlation properties of the light field, which exhibits a robust ability to resist interference. On the premise of ensuring the quality of the image, effectively broadening the imaging range can improve the practicality of the technology. In this paper, a dual-path computational ghost imaging method based on convolutional neural networks is proposed.

View Article and Find Full Text PDF

High-capacity device-independent quantum secure direct communication based on hyper-encoding.

Fundam Res

July 2024

College of Electronic and Optical Engineering, & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

Quantum secure direct communication (QSDC) can directly transmit secret messages through quantum channel without keys. Device-independent (DI) QSDC guarantees the message security relying only on the observation of the Bell-inequality violation, but not on any detailed description or trust of the devices' inner workings. Compared with conventional QSDC, DI-QSDC has relatively low secret message capacity.

View Article and Find Full Text PDF

Quantum Advantage: A Single Qubit's Experimental Edge in Classical Data Storage.

Phys Rev Lett

November 2024

Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou, Henan 450000, China.

We implement an experiment on a photonic quantum processor establishing efficacy of the elementary quantum system in classical information storage. The advantage is established by considering a class of simple bipartite games played with the communication resource qubit and classical bit (c bit), respectively. Conventional wisdom, supported by the no-go theorems of Holevo and Frenkel-Weiner, suggests that such a quantum advantage is unattainable when the sender and receiver share randomness or classical correlations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!