The relative contribution of hepatic compared with intestinal oxidative metabolism is a crucial factor in drug oral bioavailability and therapeutic efficacy. Oxidative metabolism is mediated by the cytochrome P450 mono-oxygenase system to which cytochrome P450 reductase (POR) is the essential electron donor. In order to study the relative importance of these pathways in drug disposition, we have generated a novel mouse line where Cre recombinase is driven off the endogenous Cyp1a1 gene promoter; this line was then crossed on to a floxed POR mouse. A 40 mg/kg dose of the Cyp1a1 inducer 3-methylcholanthrene (3MC) eliminated POR expression in both liver and small intestine, whereas treatment at 4 mg/kg led to a more targeted deletion in the liver. Using this approach, we have studied the pharmacokinetics of three probe drugs--paroxetine, midazolam, nelfinavir--and show that intestinal metabolism is a determinant of oral bioavailability for the two latter compounds. The Endogenous Reductase Locus (ERL) mouse represents a significant advance on previous POR deletion models as it allows direct comparison of hepatic and intestinal effects on drug and xenobiotic clearance using lower doses of a single Cre inducing agent, and in addition minimizes any cytotoxic effects, which may compromise interpretation of the experimental data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949133 | PMC |
http://dx.doi.org/10.1042/BJ20140582 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!